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Is there a polynomial time algorithm that colours a given 3-colourable graph by 1729
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Is there a polynomial time algorithm that colours a given 3-colourable graph by 2*°
colours?

(We don't know.)



Is there a polynomial time algorithm that colours a given 3-colourable graph by
O(log n) colours?

(We don't know.)



Is there a polynomial time algorithm that colours a given 3-colourable graph by
O(n<1/%) colours?

Yes! [Kawarabayashi, Thorup, 2017]



Is there a polynomial time algorithm that colours a given 3-colourable graph by O(+/n)
colours?

Yes! [Wigderson, 1982]



Is there a polynomial time algorithm that colours a given 3-colourable graph by 5
colours?

No! (Unless P = NP) [Bulin, Krokhin, O., 2019]
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A black box: Algebraic approach

Theorem [Bulin, Krokhin, O., “19].

Let [ and /\ be two promise CSPs. If there is a minion homomorphism pol(/A) — pol(T),
then there is a log-space reduction from | to

(pol denotes the minion of all polymorphisms of the problem)

There is a minion homomorphism pol(/A) — pol(I") where

> is the problem of -colouring 2-colourable 3-uniform hypergraphs,
which was proven to by NP-hard by [Dinur, Regev, Smyth, ‘05].

» [ is 5-colouring 3-colourable graphs.

Corollary [Bulin, Krokhin, O., 19].
Colouring graphs that are promised to be 3-colourable with 5 colours is NP-hard.
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The problem and its polymorphisms

The problem PCSP(Co 1, K3).
Given a graph G thatis promised to map to Gy 1, find a 3-colouring:

c: G- K3



The problem and its

2k+1, N3
Given a graph G thatis tomap to Coyi1, a 3-colouring:
c: G— Kz
A of PCSP( o1, K3) is a homomorphism f: G — Ksiie, a

mapping 7 : [2k + 1]” — {e, e, =} such that
(f(ul, vy Un), f(Vl, ey Vn)) € EK3

whenever (u;, v;) € Ec,, ., forall i € [n].

pO|(C2k+1, K3) = {f C2”k+1 — K3 | n=1,2, }
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Topology enters

Two continuous functions f, g: X — Y are said to be

if is there is a continuous function H: X x [0, 1] — Y such that H(0, x) = f(x) and
H(1, x) = g(x).
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From graphs to topological spaces

For a finite set \/, AV is the standard simplex with V/ vertices, i.e.,

AV={re01]V: ) A =1}
veV

Let G be a graph, we construct a topological space Bx(G) as the subspace of
AVe x AVe consisting of points (), p) such that

{u:A, >0} x{v:p, >0} CEg.
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BX(K4)

(1,2




BX(K3), BX(C5), .
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Kneser’s conjecture and Lovasz's proof

K(k, n) (where 2n < k) is the graph whose vertices are n-element

subsets of [k], and edges are disjoint sets.

1

Ny

23
~ 14
31
42 — 01
03
e
2l % 3
34 4

=
%



Kneser’s conjecture and Lovasz's proof

K(k, n) (where 2n < k) is the graph whose vertices are n-element
subsets of [k], and edges are disjoint sets.

23 1
40// 2/
~ 14

.
N

Kneser's conjecture.  The chromatic number of K(2n + k — 2, n) is k.
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Kneser's conjecture.  The chromatic number of K(2n + k — 2, n) is k.

SK72 5 B(K(2n 4 k —2,n)) £ Bx(Ki_1) — S*3

There is no continuous map f: S — S* such that f(—x) = —f(x).
S ={xeR"||x| =1}



A minion homomorphism

» Start with a polymorphism
: ok — K.



A minion homomorphism

» Start with a polymorphism
: ok — K.

» Each such polymorphism induces a continuous map

/Z BX(C2[<+1”) — BX(K3),



A minion homomorphism

» Start with a polymorphism
: C2k+1n — K3.

» Each such polymorphism induces a continuous map
" T"— S

St F(=xX1, s —Xn) = —F (X1, .0, Xn).

T”Z(SI)HZSIX---XSI
S ={(xy) eR* [ X +y* =1}



A minion homomorphism

Start with a polymorphism
: C2k+1n — K3.

Each such polymorphism induces a continuous map

" T"— Sh

St F(=xX1, s —Xn) = —F (X1, .0, Xn).

Homotopy classes of continuous maps T” — S* are in 1-to-1 correspondence with maps
4" =7,

st., 7(1,...,1)is ( ).

T”Z(SI)HZSIX---XSI
S ={(xy) eR* [ X +y* =1}



A minion homomorphism

» Start with a polymorphism
: C2k+1n — K3.

» Each such polymorphism induces a continuous map
" T"— S

St F(=xX1, s —Xn) = —F (X1, .0, Xn).

» Homotopy classes of continuous maps T” — S* are in 1-to-1 correspondence with
2" =7,
st., 7(1,...,1)is ( ).
Altogether, we get a
&: pol(Gops1, K3) — pol(Z).

defined by £(f) = 7.

-,-/7 — (Sl)n — S

maps

by ...x 8t

S ={(xy) eR* [ X’ +y* =1}
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Finale

Corollary [Barto, Bulin, Krokhin, 0., 21].

Let I be a finite template promise CSP. If there is a minion homomorphism
: pol(") — pol(Z) such that £(f) # 0 for all f € pol(I"), then [ is NP-complete.

The minion homomorphism
f: (C2k+1, Kg) — (Z)

satisfies the above.

Colouring graphs that are promised to map homomorphically to C.. 1) with 3 colours is
NP-hard.
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