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The constraint satisfaction problem (CSP) is a
decision problem whose goal is to find an assigment
of values to variables that satisfies a given set of
constraints.

Bulatov–Zhuk Theorem [Bulatov, 2017; Zhuk, 2017]

For every finite structure A, CSP(A) is NP-complete
or in P.

CSP(A) is the problem of deciding whether a given structure B
(in the same language) maps homomorphically to A.

Fact. There is no FO-sentence ϕ in the language of
graphs such that

a graph G is 2-colourable ⇔ G |= ϕ

(Proof via Ehrenfeucht-Fraïssé games.)

A few more facts. . . .
▶ 2-colouring is expressible in FP (an extension of

FO with fixed-points).
▶ Solving systems of linear equations over Z2 is

not expressible in FP. [Atserias, Bulatov, Dawar, 2007]
(using a Cai–Fürer–Immerman construction)

▶ Solving systems of linear equations over Z2 is
expressible in FPR2.

▶ We do not know whether solving systems of
linear equations over Z4 is expressible in FPR2!



The constraint satisfaction problem (CSP) is a
decision problem whose goal is to find an assigment
of values to variables that satisfies a given set of
constraints.

Bulatov–Zhuk Theorem [Bulatov, 2017; Zhuk, 2017]

For every finite structure A, CSP(A) is NP-complete
or in P.

CSP(A) is the problem of deciding whether a given structure B
(in the same language) maps homomorphically to A.

Fact. There is no FO-sentence ϕ in the language of
graphs such that

a graph G is 2-colourable ⇔ G |= ϕ

(Proof via Ehrenfeucht-Fraïssé games.)

A few more facts. . . .
▶ 2-colouring is expressible in FP (an extension of

FO with fixed-points).
▶ Solving systems of linear equations over Z2 is

not expressible in FP. [Atserias, Bulatov, Dawar, 2007]
(using a Cai–Fürer–Immerman construction)

▶ Solving systems of linear equations over Z2 is
expressible in FPR2.

▶ We do not know whether solving systems of
linear equations over Z4 is expressible in FPR2!



The constraint satisfaction problem (CSP) is a
decision problem whose goal is to find an assigment
of values to variables that satisfies a given set of
constraints.

Bulatov–Zhuk Theorem [Bulatov, 2017; Zhuk, 2017]

For every finite structure A, CSP(A) is NP-complete
or in P.

CSP(A) is the problem of deciding whether a given structure B
(in the same language) maps homomorphically to A.

Fact. There is no FO-sentence ϕ in the language of
graphs such that

a graph G is 2-colourable ⇔ G |= ϕ

(Proof via Ehrenfeucht-Fraïssé games.)

A few more facts. . . .
▶ 2-colouring is expressible in FP (an extension of

FO with fixed-points).

▶ Solving systems of linear equations over Z2 is
not expressible in FP. [Atserias, Bulatov, Dawar, 2007]
(using a Cai–Fürer–Immerman construction)

▶ Solving systems of linear equations over Z2 is
expressible in FPR2.

▶ We do not know whether solving systems of
linear equations over Z4 is expressible in FPR2!



The constraint satisfaction problem (CSP) is a
decision problem whose goal is to find an assigment
of values to variables that satisfies a given set of
constraints.

Bulatov–Zhuk Theorem [Bulatov, 2017; Zhuk, 2017]

For every finite structure A, CSP(A) is NP-complete
or in P.

CSP(A) is the problem of deciding whether a given structure B
(in the same language) maps homomorphically to A.

Fact. There is no FO-sentence ϕ in the language of
graphs such that

a graph G is 2-colourable ⇔ G |= ϕ

(Proof via Ehrenfeucht-Fraïssé games.)

A few more facts. . . .
▶ 2-colouring is expressible in FP (an extension of

FO with fixed-points).
▶ Solving systems of linear equations over Z2 is

not expressible in FP. [Atserias, Bulatov, Dawar, 2007]
(using a Cai–Fürer–Immerman construction)

▶ Solving systems of linear equations over Z2 is
expressible in FPR2.

▶ We do not know whether solving systems of
linear equations over Z4 is expressible in FPR2!



The constraint satisfaction problem (CSP) is a
decision problem whose goal is to find an assigment
of values to variables that satisfies a given set of
constraints.

Bulatov–Zhuk Theorem [Bulatov, 2017; Zhuk, 2017]

For every finite structure A, CSP(A) is NP-complete
or in P.

CSP(A) is the problem of deciding whether a given structure B
(in the same language) maps homomorphically to A.

Fact. There is no FO-sentence ϕ in the language of
graphs such that

a graph G is 2-colourable ⇔ G |= ϕ

(Proof via Ehrenfeucht-Fraïssé games.)

A few more facts. . . .
▶ 2-colouring is expressible in FP (an extension of

FO with fixed-points).
▶ Solving systems of linear equations over Z2 is

not expressible in FP. [Atserias, Bulatov, Dawar, 2007]
(using a Cai–Fürer–Immerman construction)

▶ Solving systems of linear equations over Z2 is
expressible in FPR2.

▶ We do not know whether solving systems of
linear equations over Z4 is expressible in FPR2!



The constraint satisfaction problem (CSP) is a
decision problem whose goal is to find an assigment
of values to variables that satisfies a given set of
constraints.

Bulatov–Zhuk Theorem [Bulatov, 2017; Zhuk, 2017]

For every finite structure A, CSP(A) is NP-complete
or in P.

CSP(A) is the problem of deciding whether a given structure B
(in the same language) maps homomorphically to A.

Fact. There is no FO-sentence ϕ in the language of
graphs such that

a graph G is 2-colourable ⇔ G |= ϕ

(Proof via Ehrenfeucht-Fraïssé games.)

A few more facts. . . .
▶ 2-colouring is expressible in FP (an extension of

FO with fixed-points).
▶ Solving systems of linear equations over Z2 is

not expressible in FP. [Atserias, Bulatov, Dawar, 2007]
(using a Cai–Fürer–Immerman construction)

▶ Solving systems of linear equations over Z2 is
expressible in FPR2.

▶ We do not know whether solving systems of
linear equations over Z4 is expressible in FPR2!



The constraint satisfaction problem (CSP) is a
decision problem whose goal is to find an assigment
of values to variables that satisfies a given set of
constraints.

Bulatov–Zhuk Theorem [Bulatov, 2017; Zhuk, 2017]

For every finite structure A, CSP(A) is NP-complete
or in P.

CSP(A) is the problem of deciding whether a given structure B
(in the same language) maps homomorphically to A.

Fact. There is no FO-sentence ϕ in the language of
graphs such that

a graph G is 2-colourable ⇔ G |= ϕ

(Proof via Ehrenfeucht-Fraïssé games.)

A few more facts. . . .
▶ 2-colouring is expressible in FP (an extension of

FO with fixed-points).
▶ Solving systems of linear equations over Z2 is

not expressible in FP. [Atserias, Bulatov, Dawar, 2007]
(using a Cai–Fürer–Immerman construction)

▶ Solving systems of linear equations over Z2 is
expressible in FPR2.

▶ We do not know whether solving systems of
linear equations over Z4 is expressible in FPR2!



Why is homotopy theory so effective in computational complexity
of CSPs?

Part I.What problems am I talking about?



Graph colouring

G

H

Given two graphs G = (VG ,EG ) and H = (VH ,EH), a graph homomorphism G → H is a mapping
h : VG → VH that preserves edges,

uv ∈ EG ⇒ h(u)h(v) ∈ EH .

Example. A colouring of a graph G with k colours is just a homomorphism c : G → Kk .
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The H-colouring problem

Given two graphs G = (VG ,EG ) and H = (VH ,EH), a graph homomorphism G → H is a mapping
h : VG → VH that preserves edges,

uv ∈ EG ⇒ h(u)h(v) ∈ EH .

H-colouring
Fix a graph H (called template). Given a graph G , decide whether there is a homomorphism G → H .

▶ K2-colouring is easy (it is solvable in logspace [Reingold, 2005]);
▶ Kk -colouring is NP-complete for all k > 2.
▶ What about other graphs H?

Theorem [Hell & Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that is solvable in polynomial time is 2-colouring.



Outline of a new proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise contractible.

3. Use Brower’s fixed-point theorem to show that
H has a loop if H is not bipartite.



Why is homotopy theory so effective in computational complexity
of CSPs?

Part II.What the . . . is the solution space of H-colouring?



Solution posets: Multihomomorphisms

A multihomomorphism is a function
f : V (G ) → 2V (H) \ {∅} such that, for all edges
uv ∈ E (G ), we have that

f (u)× f (v) ⊆ E (H).

▶ Multihomomorphisms are naturally ordered

f ≤ g ⇔ f (u) ⊆ g(u) for all u

▶ mhom(G ,H) is the poset of
multihomomorphisms.

K2 → K3
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2
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Solution spaces

Given graphs G and H , we define the space

Hom(G ,H) = |N mhom(G ,H)|

▶ The vertices are multihomomorphisms,
▶ f and g are connected by an arc if f ≤ g ,
▶ {f , g , h} form a triangle if f ≤ g ≤ h,
▶ etc.

We view this as the solution space of instance G of
H-colouring.

Example. Hom(K2,K3) ≃ S1.
Example. Inmhom(K2,K4) we have:

0–1 ≤ 02–1 ≤ 02–13
and

0–1 ≤ 0–12 ≤ 0–123

which creates 2-dimensional faces.

Two colourings f and g are connected if g can be obtained from f by changing one value at a time while
remaining a valid colouring.



4-colourings of K2
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4-colourings of K2
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4-colourings of K2

Hom(K2,K4)



Why is homotopy theory so effective in computational complexity
of CSPs?

Part III. A proof



Outline of the proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise
contractible.

3. Use Brower’s fixed-point theorem to show that
H has a loop if H is not bipartite.
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Algebraic approach to the constraint satisfaction problem

An operation t : An → A is Taylor

t(x ∗ ... ∗) ≈ t(y ∗ ... ∗)
t(∗ x ... ∗) ≈ t(∗ y ... ∗)

...
t(∗ ∗ ... x) ≈ t(∗ ∗ ... y)

for all x , y ∈ A.

Lemma [Taylor, 1977].
If a topological space X admits a continuous
idempotent Taylor operation t , then π1(X ) is Abelian.
t : An → A is idempotent if t(x , ... , x) ≈ x .

Theorem (CSP Dichotomy).
A CSP with a finite template A either
1. admits a Taylor homomorphism t : An → A, and is

in P [Bulatov, 2017; Zhuk, 2017]; or
2. does not admit a Taylor homomorphism and is

NP-complete [Bulatov, Jeavons, Krokhin, 2005].

Theorem [Bulatov, 2005; Siggers, 2005].
A loopless core graph H has a Taylor homomorphism if
and only if it is bipartite.
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Outline of the proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.
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Taylor→ contractibility

A topological space X is called contractible if it is homotopy equivalent to a point {∗}. For us, this is equivalent to
πn(X ) = 0 for all n ≥ 0.

Theorem [Larose, Zádori, 2005].
Every connected finite poset that admits a monotone Taylor operation is contractible.

The problem is thatmhom(G ,H) is not Taylor if H is Taylor!

Nevertheless, there is a lax-Taylor monotone operation t : mhom(G ,H)n → mhom(G ,H) that satisfies:

t(x ∗ ... ∗) ≥ s1(x , y) ≤ t(y ∗ ... ∗)
t(∗ x ... ∗) ≥ s2(x , y) ≤ t(∗ y ... ∗)

...
t(∗ ∗ ... x) ≥ sn(x , y) ≤ t(∗ ∗ ... y)

for all x , y ∈ A.

Theorem [Meyer, O, 2025].
Every connected finite poset that admits a monotone lax-Taylor operation is contractible, and therefore
Hom(G ,H) is component-wise contractible for all G if H has a Taylor polymorphism.
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4-colourings of K2

Hence, 4-colouring is NP-hard!



Outline of the proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise
contractible.

3. Use Brower’s fixed-point theorem to show
that H has a loop if H is not bipartite.



A fixed-point theorem

Theorem (Brower’s fixed-point theorem).
Every continuous function f : Dn → Dn has a fixed point, i.e., there exists x ∈ Dn such that f (x) = x .

More generally: If X is a contractible compact CW-complex, then every function f : X → X has a fixed
point.
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A Z2 action on Hom(K2,H)

The space Hom(K2,H) admits an action of the group
Z2, i.e., there is a homeomorphism

ϕ : Hom(K2,H) → Hom(K2,H)

such that ϕ2(x) = x .

▶ ϕ is defined by flipping the two values of each
multihomomorphism.

▶ flipping the two values induces a monotone
involution on the poset, and hence a continuous
involution on the space.

▶ ϕ does not have a fixed point, otherwise H would
contain an edge uu.

0–1
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0–201–21–2

1–02
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2–0 2–01 2–1
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The proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

Proof. Assume that H is not-bipartite, and consider the
space X = Hom(K2,H).
Observe that the space admits a fixed-point free Z2-action
ϕ : X → X that for each multihomomorphismm flips the
values ofm(0) andm(1).
If H is not-bipartite then ϕ fixes a connected component
of X . Indeed, if uv is an edge of an odd cycle of H then uv
is connected to vu = ϕ(uv).
If H admitted a Taylor homomorphism,mhom(K2,H)
would admit a lax-Taylor operation, and all its connected
component would be contractible.
Hence, ϕ which acts on the component of uv has a fixed
point, the contradiction. ■



How it started. . .

Conjecture [Brakensiek, Guruswami, 2018].
Colouring graphs that are promised to map homomorphically to C(2k+1) with
c colours is NP-complete for all c > 2 and k > 0.
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[2] Wrochna, Živný (2020). Improved hardness for H-colourings of G -colourable graphs.

SODA 2020.
[3] Avvakumov, Filakovský, O, Tasinato, & Wagner (2025). Hardness of 4-colouring

G -colourable graphs. STOC 2025.

Theorem [Avvakumov et al., 2025].
Colouring graphs that are promised to map homomorphically to C(2k+1) with
4 colours is NP-complete.
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4-Colouring of 3-Colourable 3-Uniform Hypergraphs STACS 2024.



How does the topology of the solution space influence the
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[3] Meyer, O (2025). A topological proof of the Hell–Nešetřil
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Theorem [Meyer, 2024; Meyer, O, 2025].
A constraint satisfaction problem is NP-complete, unless
each connected component of the solution space is
contractible (i.e., topologically trivial).

Corollary [Hell & Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

[4] Briceño, Bulatov, Dalmau, Larose (2021). Dismantlability,
connectedness, and mixing in relational structures. JCT B
147: 37–70.

Theorem [Briceño et al., 2017].
A constraint satisfaction problem is expressible in FO if
and only if the solutions spaces are either contractible or
empty.
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