NP-hardness of promise colouring graphs via homotopy

Jakub Opršal et al.*

* A. Krokhin, M. Wrochna, S. Živný;
M. Filakovský, T-V. Nakajima, G. Tasinato, U. Wagner

Is there a polynomial time algorithm that colours a given 3-colourable graph by 3456 7 1729 2¹⁵ $O(\log n) \tilde{O}(n^{0.19747})$ colours?

No! (Unless P = NP) [Karp, 1972] No! (Unless P = NP) [Khanna, Linial, Safra, 2000] (We didn't know.) (We don't know.) Yes! [Kawarabayashi, Thorup, Yoneda, 2024]

A black box: Algebraic approach

Theorem [Barto, Bulín, Krokhin, O., '21].

Let Γ and Δ be two promise CSPs. If there is a natural transformation $pol(\Delta) \rightarrow pol(\Gamma)$, then there is a log-space reduction from Γ to Δ .

 $pol(?): set_{<\aleph_0} \rightarrow set_{<\aleph_0}$ denotes the polymorphism minion of the problem ?.

There is a natural transformation $pol(\Delta) \rightarrow pol(\Gamma)$ where

- ▲ is the problem of 27480-colouring 2-colourable 3-uniform hypergraphs, which was proven to by NP-hard by [Dinur, Regev, Smyth, '05].
- ► **Γ** is **5**-colouring **3**-colourable graphs.

Corollary [Barto, Bulín, Krokhin, O., '21].

Colouring graphs that are promised to be 3-colourable with 5 colours is NP-hard.

Chapter I: The story begins...

If colouring 3-colourable graphs with 3-colours is NP-hard, can we give a stronger promise to make the problem easier?

Andrei Krokhin & O.

What stronger promise can we give?

Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$, a graph homomorphism $G \to H$ is a mapping $h: V_G \to V_H$ that preserves edges,

$$(u, v) \in E_{G} \Rightarrow (h(u), h(v)) \in E_{H}.$$

Example. A colouring of a graph *G* with *k* colours is just a homomorphism $c: G \to K_k$.

Promise that the input graph maps to an odd cycle C_{2k+1} !

The problems

Promise graph homomorphism $PCSP(C_{2k+1}, K_3)$.

Given a graph *G* that is promised to map to C_{2k+1} , find a 3-colouring:

 $G \to C_{2k+1} \Rightarrow c \colon G \to K_3$

Promise hypergraph homomorphism $PCSP(LO_3, LO_4)$.

Given a 3-uniform hypergraph H that is promised to be linearly-ordered 3-colourable, find a linearly-ordered 4-colouring:

 $H \rightarrow LO_3 \Rightarrow c \colon H \rightarrow LO_4$

Linearly-ordered hypergraph colouring is mapping $c: H \to [k]$ such that for each $(u_1, u_2, u_3) \in E^H$, there exists $i \in \{1, 2, 3\}$ such that $c(u_i) > c(u_j)$ for all $j \neq i$.

Graph colouring and its polymorphisms

The problem $PCSP(C_{2k+1}, K_3)$.

Given a graph *G* that is promised to map to C_{2k+1} , find a 3-colouring:

 $c\colon G\to K_3$

Definition.

A polymorphism of PCSP(C_{2k+1}, K_3) is a homomorphism $f: C_{2k+1}^n \to K_3$, i.e., a mapping $f: [2k+1]^n \to \{\bullet, \bullet, \bullet\}$ such that

$$(f(u_1,\ldots,u_n),f(v_1,\ldots,v_n))\in E_{K_3}$$

whenever $(u_i, v_i) \in E_{C_{2k+1}}$ for all $i \in [n]$.

 $\mathsf{pol}(C_{2k+1}, K_3) \colon [n] \mapsto \mathsf{hom}(C_{2k+1}^n, K_3)$

Polymorphisms $C_7^2 \rightarrow K_3$

Chapter II: Topology enters

Two continuous functions $f, g: X \rightarrow Y$ are said to be homotopic

if is there is a continuous function $H: X \times [0, 1] \to Y$ such that H(0, x) = f(x) and H(1, x) = g(x).

Fix a test graph $T = K_2$. A multimorphism from T to G is a mapping $f: V^T \to \mathscr{P}(V^G) \setminus \{\emptyset\}$ such that

$$(u, v) \in E^T \Rightarrow f(u) \times f(v) \subseteq E^G$$

We denote the poset of all such multimorphisms by mhom(T, G). Multimorphisms are ordered by $f \le g := \forall x (f(x) \subseteq g(x))$.

Definition.

The topological space $B_X(G)$ is the geometric realisation of the nerve of mhom(K_2, G).

Two graph homomorphisms f and g are homotopic if g can be obtained from f by **changing one value at a time** while remaining a valid homomoprhism.

 $Bx(K_4)$

$$Bx(K_3), Bx(C_5), \ldots$$

 $Bx(C_{2k+1}^{2})*$

*up to homotopy equivalence

A natural transformation

► There is a natural (in *n*) map:

$$\hom(C_{2k+1}^n, K_3) \to [T^n, S^1]$$

• Homotopy classes of continuous maps $T^n \rightarrow S^1$ are in 1-to-1 correspondence with linear maps

$$\mathbb{Z}^n \to \mathbb{Z}$$

(since
$$S^1 = B\mathbb{Z}$$
 and $H^1(T^n, \mathbb{Z}) \simeq \mathbb{Z}^n$).

$$T^{n} = (S^{1})^{n} = S^{1} \times \dots \times S^{1}$$
$$S^{1} = \{(x, y) \in \mathbb{R}^{2} \mid x^{2} + y^{2} = 1\}$$

Altogether, we get a natural transformation:

$$\xi$$
: pol(C_{2k+1}, K_3) \rightarrow pol(\mathbb{Z}).

Corollary [Barto, Bulín, Krokhin, O., '21].

Let Γ be a finite template promise CSP. If there is a natural transformation $\xi \colon \operatorname{pol}(\Gamma) \to \operatorname{pol}(\mathbb{Z})$ such that $\xi(f) \neq 0$ for all $f \in \operatorname{pol}(\Gamma)$, then Γ is NP-complete.

A minion homomorphism

Epilogue

Theorem [Krokhin, O., '19].

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with 3 colours is NP-hard.

*the proof was brought to you by [Wrochna, Živný, '20]

Krokhin, O., Wrochna, & Živný. (2023). Topology and adjunction in promise constraint satisfaction. *SIAM Journal on Computing*, 52(1), 38–79. arXiv:2003.11351, doi:10.1137/20M1378223

Theorem [Filakovský, Nakajima, O., Tasinato, Wagner, STACS'24].

Linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs is NP-hard.

Filakovský, Nakajima, O., Tasinato, & Wagner. (2024). Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs. *Symposium on Theoretical Aspects of Computer Science, STACS 2024*, (pp. 34:1–34:19). arXiv:2312.12981, doi:10.4230/LIPIcs.STACS.2024.34