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Bulatov-Zhuk

Theorem (Bulatov-Zhuk, [Bulatov, 17], [Zhuk, 17], [Siggers, 10], et al.)
Let B be a finite structure. Exactly one of the following holds:
1. There exists a minor-preserving map Pol(B)→P , and CSP(B)
is NP-complete,

2. Pol(B) contains a function s satisfying the identity

s(x , y , x , z , y , z) ≈ s(y , x , z , x , z , y),

and CSP(B) is in P.
In particular, CSP(B) is in P or NP-complete.
(P is the clone of projections on a two-element set.)



The question

Conjecture (Bodirsky-Pinsker; [Barto, , Pinsker, 18])
Let B be a reduct of a finitely bounded homogeneous structure. Exactly
one of the following holds:
1. There exists a uniformly continuous minor-preserving map from

Pol(B) toP , and CSP(B) is NP-complete,
2. Pol(B) does not have a uniformly continuous minor-preserving
map toP , and CSP(B) is in P.

Can the non-existence of a minor-preserving map toP be
replaced by a statement positing that some fixed set of identities
holds in Pol(B)?



Overview

1. Some very weak height 1 identities
2. There is no weakest height 1 condition (Manuel Bodirsky)
3. Topology is relevant (Antoine Mottet)



Height 1 identities

Height 1 identity is an identity of the form

f (xπ(1), ... , xπ(n)) ≈ g(xσ(1), ... , xσ(m)).

Height 1 condition is a finite set of height 1 identities over a finite
algebraic language.
The function symbols are considered to be variables.
Generaly, a finite system of identities in some algebraic language is
called a strong Maltsev condition.



Some very weak identities

[Tay88] Walter Taylor. Some very weak identities. Algebra Universalis,
25(1):27–35, Dec 1988.

Is there a weakest strong Maltsev condition?
I No! [García, Taylor, 84], [Taylor, 88]
There is a weakest idempotent str. Maltsev condition. [Olšák, 2017]
Is there a weakest height 1 condition?
I Yes, for finite algebras. [Siggers, 10]

s(x , y , x , z , y , z) ≈ s(y , x , z , x , z , y)



G-conditions

Start with an undirected graphG = (V ,E ), construct a height 1
condition ΣG in the following way:
1. for each v ∈ V , introduce a ternary symbol fv , and
2. for each edge (u, v) ∈ E , introduce a 6-ary symbol g(u,v) and
add to ΣG the identities

fu(x , y , z) ≈ g(u,v)(x , y , x , z , y , z)

fv (x , y , z) ≈ g(u,v)(y , x , z , x , z , y).



Examples

Siggers!

f (x , y , z) ≈ g(x , y , x , z , y , z)

f (x , y , z) ≈ g(y , x , z , x , z , y).



Examples

Trivial! Take fi (x1, x2, x3) = xi , and extend to g(i ,j)’s.

y ≈ g(2,3)(x , y , x , z , y , z)

z ≈ g(2,3)(y , x , z , x , z , y).



Observations

ΣG essentially means

‘If a compatible graph containsK3 then it contains a homomorphic
image ofG.’

Lemma
LetG andH be two finite graphs.
I IfGmaps homomorphically intoH then ΣH implies ΣG.
I ΣG is trivial if and only ifG is 3-colorable.



Note

G-conditions can be generalized toH,G-conditions. Meaning:

H⇒ G

I ΣG is theK3,G-condition.
I IfG is a loop, we get loop conditions.
I These conditions are inherent in the algebraic CSP reductions.
[Bulín, Krokhin, , 19]



As good as it gets

Lemma
For any non-trivial height 1 condition Σ, there exists a graphG that is
not 3-colorable and such that ΣG is weaker than (or equivalent to) Σ.
Proof sketch.
I Observe that Σ is not satisfied in Pol(K3).
I This is witnessed by the fact that the indicator graphG of Σ in

K3 does not map toK3.

VG = {f (a1, ... , ak) : ai ∈ [3], f ∈ Lang(Σ)}/Σ

EG = {(f (a1, ... , ak), f (b1, ... , bk)) : ai 6= bi}

I Notice that Σ implies ΣG. �



Next in this session. . .

You will learn that none of the conditions ΣG is the weakest.

�

Lemma
For any non-trivial height 1 condition Σ, there exists a graphG that is
not 3-colorable and such that ΣG is weaker than (or equivalent to) Σ.
Lemma
LetG be a finite graph. ThenGmaps homomorphically to any graph
H that containsK3, and whose polymorphisms satisfy ΣG.
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