Promises, constraint satisfaction, and problems

Beyond universal algebra (part 1)

Jakub Oprsal

AAA 100, 7 Feb 2021

A0
@ Durham

University



overview

Part | (yesterday)

P algebraic approach to (promise) constraint satisfaction.

Part Il (today)
» beyond algebraic approach

» open problems



previously on this tutorial...

Theorem.

The following are equivalent for all pairs of similar relational
structures A1, A, and Bq, B5:

1. thereis a gadget reduction from PCSP(B1, B2) to
PCSP(Al, Az),'
2. (B1, By) is a homomorphic relaxation a pp-power of (Ay, Ay);

3. there is a minion homomorphism from pol(Az, A;) to
pol(B1, By).



previously on this tutorial...

Xg, id Ia
PCSP(Bl, B2) — PCSP(,@,%) — PCSP(@, JZ/) e PCSP(AL Ag)

o/ = pol(A1, Ap), # = pol(By, By)
Generalised loop conditions C — X (A, C);
Free structure .# — F_4(A);

Indicator structure ¥ — Ia(X),

Polymorphisms C > pol(A, C)

(A B) = .7 iff B—F ,(A)
Ia(X) — B iff ¥ — pol(A, B)



application of part i

Theorem.
For all k > 2, PCSP(H2, Hy) is NP-hard.

H, is the structure with domain Hy = [k] and one ternary relation
naey = [k \ {(a,2,3) | a € [k]}.

Goal. areduction from PCSP(Hz, Hy) to PCSP(K3, Ks).
ZH2 IK
PCSP(HQ, F,%VS(H2)) — PCSP(,@, ,%6,5) —; PCSP(K3, K5)

where J#3 5 = pol(K3, Ks).

Need. F ;. (H2) — H,for some n.



FP0|(K3,K5)(H2)

> vertices: F = pol®®) (K3, Ks),

> hyperedges: (f1, 2, f3) € RF if 3g € pol®) (K3, Ks) with

—~~

fix.y) = g(x. .y, y.y,x
fa(x,y) = g(x,y, x, ¥y, x,y
f3(X’y) ~ g(YvaXvay.y

~— — ~—

Claim.  Fpoi(ks,k5)(H2) — Hj, for some n.

Since F is finite, it is enough to show that F does not have a
‘hyperloop’ (f, f, ). Such a hyperloop would give

gx.x, v,y y. x)=gx y. x. vy, x.y) =gy, x,.x,x,y.y)

a.k.a. an Olsak polymorphism.



without OISak things are hard

Proof. Ik, (OI34k) contains:

g(100,011) g(012,120)
121,212 g(201, 012 |
g
g(220,002) g(120,201)

Corollary
For all d > 3, PCSP(Ky, Kag—1) is NP-hard.

Corollary
If pol(A, B) contains no Ol3dk function, then PCSP(A, B) is NP-hard.



previously on this tutorial...

Xg, id Ia
PCSP(Bl, B2) — PCSP(,@,%) — PCSP(@, JZ/) e PCSP(AL Ag)

o/ = pol(A1, Ap), # = pol(By, By)
Generalised loop conditions C — X (A, C);
Free structure .# — F_4(A);

Indicator structure ¥ — Ia(X),

Polymorphisms C > pol(A, C)

(A B) > .7 iff B—F ,(A)
Ia(X) — B iff ¥ — pol(A, B)



beyond gadget reductions



history of promises

Austrin, Guruswami, Hastad. (2 + €)-Sat is NP-hard, SICOMP 2017.
Theorem.
PCSP((2k + 1)-Sat, (k, 2k + 1)-Sat) is NP-hard.

(k, g)-Sat requires that in an instance of g-Sat at least k literals are
satisfied in each clause.

Riar.ap) = {(b1, .. bg) : #{i | bi # ai} > k}

Proof.

Invent polymorphisms and reduce from a version of the PCP
theorem . |



the PCP theorem

PCP stands for ‘probabilistically checkable proofs’, but the theorem
can be formulated as an inapproximability of the CSP:

Theorem.
There exists a (Boolean) CSP template D and € < 1 such that given
an instance of CSP(D), it is NP-hard to distinguish between the
following two cases:

P> acceptif the instance is solvable,

P> reject if at most e-fraction of constraints can be satisfied.



PCP

CSP(K3) S PCSP(22, .4) 4 PCSP(A, B)

Corollary

For all ¢ > 0, there exists N such that: Given a minor condition ¥ of
arity at most N, it is NP-hard to distinguish the following two cases:

> acceptif X is trivial

P> reject if at most e-fraction of identities in X can be
simultaneously satisfied by projections.

In CS literature, this problem is referred to as label cover.
» most hardness results in PCSP are obtained by reduction from the
PCP theorem via some version of label cover.

» to obtain new hardness results, often a new stronger version of
hardness of label cover is needed.



CSP(K3) "L PCSP(22, .#) &4 PCSP(A, B)

Corollary
If pol(A, B) has bounded essential arity then PCSP(A, B) is
NP-hard.

(A minion .# has bounded essential arity k, if every f € .# is a minor of
a function of arity k.)

Unlike for CSPs,

» no finite set of identities can imply tractability of a PCSP!

» there are many PCSPs whose hardness cannot be explained by the
algebraic approach!

This calls for reductions that are better than gadgets
reductions!



beyond gadget reductions

use the arc-graph pp-power as a reduction — this is the other way
than you would expect!

they obtain hardness of PCSP(Kj, K(Lkﬁzj)*l) forall kK > 4.

(csp-seminar.org/talks/libor-barto/).

describe a sufficient condition for reducing one PCSP to another —
this condition is given by weakening minion homomorphisms to
‘e-homomorphisms’ (list homomorphisms).

this show hardness of PCSP with polymorphisms of bounded
essential arity without the PCP theorem!



problems



search vs. decision

Search.  Given a finite structure | that maps homomorphically to A,
find a homomorphism h: | — B.

Decide. Given | arbitrary structure with the same language,

» acceptifl — A,
» rejectifl 4 B.

Problem 1
Does search always belong to the same complexity class as decision?



complexity of concrete templates

Problem 2
Fix A, classify how the complexity of PCSP(A, B) depends on B.

» can be sold as approximation variant of CSP(A),

> very few classification to-date: A = NAE-Sat ,
some progress on A = 1-in-3-Sat

» can provide nice conditions for hardness (e.g., shows
implies that absence of OISdk implies hardness).

» contains important special cases: A = K3 is the approximate
graph colouring.

Conjecture 3 (Brakensiek-Guruswami)

For all non-bipartite loopless graphs G and H, PCSP(G, H) is
NP-hard.



power of algorithms

Problem 4
Characterise applicability of some algorithm in solving PCSPs.



local consistency algorithm

Fix k € N. Given an instance | of CSP(A):

1. for all subsets K C | of size at most k:
let 7« be the set of all partial homomorphisms | — A defined on K.

2. forall K C L:

» remove from 7 all f'ss.t. f|x ¢ Fx,
» remove from F all f's that do not extend to a member of 7,

3. if Fx = () for some K, return False,

4. repeat (2) & (3) as long as something changes, else return True.

For PCSP(A, B), run consistency on | as an instance of CSP(A). We
require that any consistent instance | has a homomorphism to B.

Problem 5
Characterise all finite template PCSPs solvable by local consistency.



affine integer programming

The basic affine integer program for an instance | of PCSP(A, B) is
the following system of equations over Z:

» variablesare v; ,foralli € /,a€ A and vi,forallR,ic R',a c RA,
» subject to

Y oacaVia=1 foreachi e I,

Y acRA 4= Via = Via for each Randi e R".

This gives an algorithm for PCSP(A, B): solve the BAIP of | over A,
and return True if it has a solution, else return False.

» The same as asking if X(A, 1) is satisfied by affine functions over Z.
» The applicability of BAIP are characterised via alternating functions.



linear programming

The basic linear program for an instance | of PCSP(A, B) is the
same as BAIP with the exception that the variables are taking
valuesin Q@ N[0, 1].

» The same as asking if (A, ) is satisfied by convex combinations
over Q.

» Such linear programs are solvable in polynomial time, and therefore
give a polynomial time algorithm for PCSPs in a similar way as BAIP.

» The applicability of BLP is characterised by symmetric functions.

Problem 6
Is there a (finite template) PCSP(A, B) which is solvable by some level
of Sherali-Adams but it is not solvable by local consistency?



Brakensiek-Guruswami algorithm

Assume | is an instance of PCSP(A, B).
1. solve the BLP program for I, if no solution return False, else pick a
solution™ v,

2. start with the BAIP for | with variables w_, and add the equation
w_ = 0 wheneverv_ = 0.

3. solve the resulting AIP, if no solution return False else return True.

Theorem

The above algorithm solves PCSP(A, B) iff pol(A, B) contains for
all k a function f satisfying

PO, oo Xk Y10 e Y1) R T (X1 ooo 0 Xa(k)s Yo (1)1 o1 Yo(k+1))

for all permutations 7, o.



an algorithm

» Every tractable PCSP that | am aware of is either a homomorphic
relaxation of a finite template CSP with a Siggers polymorphism, or
solvable by Brakensiek-Guruswami algorithm!

» Unfortunately, BG algorithm does not solve all CSPs with Siggers
(e.g., G + G3). We need a refinement.

Conjecture 7

When we replace LP with Sherali-Adams in the first step of BG
algorithm, the resulting algorithm solves all finite template CSPs with
Siggers polymorphism.

Prize for a negative answer. A bottle of fine single malt Scotch
whisky.



	beyond gadget reductions
	problems
	power of algorithms

