
Promises, constraint satisfaction, and problems
Beyond universal algebra (part II)

Jakub Opršal

AAA 100, 7 Feb 2021

overview

Part I (yesterday)
I algebraic approach to (promise) constraint satisfaction.

Part II (today)
I beyond algebraic approach
I open problems

previously on this tutorial. . .

Theorem. [Barto, Bulín, Krokhin, O, ‘19]
The following are equivalent for all pairs of similar relational
structures A1,A2 and B1,B2:
1. there is a gadget reduction from PCSP(B1,B2) to

PCSP(A1,A2);
2. (B1,B2) is a homomorphic relaxation a pp-power of (A1,A2);
3. there is a minion homomorphism from pol(A1,A2) to

pol(B1,B2).

previously on this tutorial. . .

PCSP(B1,B2)
ΣB1→ PCSP(P, B)

id→ PCSP(P, A)
IA1→ PCSP(A1,A2)

A = pol(A1,A2), B = pol(B1,B2)
Generalised loop conditions C 7→ Σ(A,C);
Free structure M 7→ FM (A);
Indicator structure Σ 7→ IA(Σ),
Polymorphisms C 7→ pol(A,C)

Σ(A,B)→M iff B→ FM (A)

IA(Σ)→ B iff Σ→ pol(A,B)

application of part i

Theorem. [Dinur, Regev, Smyth, ‘05]
For all k ≥ 2, PCSP(H2,Hk) is NP-hard.

Hk is the structure with domain Hk = [k] and one ternary relation
naek = [k]3 \ {(a, a, a) | a ∈ [k]}.

Goal. a reduction from PCSP(H2,Hk) to PCSP(K3,K5).

PCSP(H2,FK3,5(H2))
ΣH2→ PCSP(P, K3,5)

IK3→ PCSP(K3,K5)

where K3,5 = pol(K3,K5).

Need. FK3,5(H2)→ Hn for some n.

Fpol(K3,K5)(H2)

I vertices: F = pol(2)(K3,K5),
I hyperedges: (f 1, f 2, f 3) ∈ RF if ∃g ∈ pol(6)(K3,K5) with

f 1(x , y) ≈ g(x , x , y , y , y , x)

f 2(x , y) ≈ g(x , y , x , y , x , y)

f 3(x , y) ≈ g(y , x , x , x , y , y).

Claim. Fpol(K3,K5)(H2)→ Hn for some n.

Since F is finite, it is enough to show that F does not have a
‘hyperloop’ (f , f , f). Such a hyperloop would give

g(x , x , y , y , y , x) ≈ g(x , y , x , y , x , y) ≈ g(y , x , x , x , y , y)

a.k.a. an Olšák polymorphism.

without Olšák things are hard

Proof. IK3(Olšák) contains:

g(100, 011)

g(121, 212)

g(220, 002)

g(012, 120)

g(120, 201)

g(201, 012) �

Corollary [Bulín, Krokhin, Opršal, ‘19]
For all d ≥ 3, PCSP(Kd ,K2d−1) is NP-hard.

Corollary
If pol(A,B) contains no Olšák function, then PCSP(A,B) is NP-hard.

previously on this tutorial. . .

PCSP(B1,B2)
ΣB1→ PCSP(P, B)

id→ PCSP(P, A)
IA1→ PCSP(A1,A2)

A = pol(A1,A2), B = pol(B1,B2)
Generalised loop conditions C 7→ Σ(A,C);
Free structure M 7→ FM (A);
Indicator structure Σ 7→ IA(Σ),
Polymorphisms C 7→ pol(A,C)

Σ(A,B)→M iff B→ FM (A)

IA(Σ)→ B iff Σ→ pol(A,B)

beyond gadget reductions

history of promises

Austrin, Guruswami, Håstad. (2 + ε)-Sat is NP-hard, SICOMP 2017.

Theorem. [Austrin, Guruswami, Håstad, ‘17]
PCSP((2k + 1)-Sat, (k , 2k + 1)-Sat) is NP-hard.

(k, g)-Sat requires that in an instance of g -Sat at least k literals are
satisfied in each clause.

R(a1,...,ag) = {(b1, ... , bg) : #{i | bi 6= ai} ≥ k}

Proof.
Invent polymorphisms and reduce from a version of the PCP
theorem [Arora, Safra, “98]. �

the PCP theorem

PCP stands for ‘probabilistically checkable proofs’, but the theorem
can be formulated as an inapproximability of the CSP:

Theorem. [Arora, Safra, ‘98]
There exists a (Boolean) CSP templateD and ε < 1 such that given
an instance of CSP(D), it is NP-hard to distinguish between the
following two cases:
I accept if the instance is solvable,
I reject if at most ε-fraction of constraints can be satisfied.

CSP(K3)
PCP→ PCSP(P,M)

IA→ PCSP(A,B)

Corollary [Raz, ‘98; et al.]
For all ε > 0, there exists N such that: Given a minor condition Σ of
arity at most N , it is NP-hard to distinguish the following two cases:
I accept if Σ is trivial
I reject if at most ε-fraction of identities in Σ can be

simultaneously satisfied by projections.

In CS literature, this problem is referred to as label cover.

I most hardness results in PCSP are obtained by reduction from the
PCP theorem via some version of label cover.

I to obtain new hardness results, often a new stronger version of
hardness of label cover is needed. [DRS‘05, BG‘18, BWŽ‘20]

CSP(K3)
PCP→ PCSP(P,M)

IA→ PCSP(A,B)

Corollary [Austrin, Guruswami, Håstad, ‘17]
If pol(A,B) has bounded essential arity then PCSP(A,B) is
NP-hard.

(A minion M has bounded essential arity k , if every f ∈M is a minor of
a function of arity k .)

Unlike for CSPs,

I no finite set of identities can imply tractability of a PCSP!
I there are many PCSPs whose hardness cannot be explained by the

algebraic approach!

This calls for reductions that are better than gadgets
reductions!

beyond gadget reductions

[Wrochna, Živný, ‘20]

I use the arc-graph pp-power as a reduction — this is the other way
than you would expect!

I they obtain hardness of PCSP(Kk ,K(k
bk/2c)−1) for all k ≥ 4.

[Barto, Kozik, ‘20+] (csp-seminar.org/talks/libor-barto/).

I describe a sufficient condition for reducing one PCSP to another —
this condition is given by weakening minion homomorphisms to
‘ε-homomorphisms’ (list homomorphisms).

I this show hardness of PCSP with polymorphisms of bounded
essential arity without the PCP theorem!

problems

search vs. decision

Search. Given a finite structure I that maps homomorphically to A,
find a homomorphism h : I→ B.

Decide. Given I arbitrary structure with the same language,

I accept if I→ A,

I reject if I 6→ B.

Problem 1
Does search always belong to the same complexity class as decision?

complexity of concrete templates

Problem 2
Fix A, classify how the complexity of PCSP(A,B) depends on B.

I can be sold as approximation variant of CSP(A),
I very few classification to-date: A = NAE-Sat [DRS05],

some progress on A = 1-in-3-Sat [Barto, Battistelli, Berg, ‘21].
I can provide nice conditions for hardness (e.g., [DRS05] shows

implies that absence of Olšák implies hardness).
I contains important special cases: A = K3 is the approximate

graph colouring.

Conjecture 3 (Brakensiek-Guruswami)
For all non-bipartite loopless graphs G and H , PCSP(G ,H) is
NP-hard.

power of algorithms

Problem 4
Characterise applicability of some algorithm in solving PCSPs.

local consistency algorithm

Fix k ∈ N. Given an instance I of CSP(A):

1. for all subsets K ⊆ I of size at most k :
let FK be the set of all partial homomorphisms I→ A defined on K .

2. for all K ⊆ L:
I remove from FL all f ’s s.t. f |K /∈ FK ,
I remove from FK all f ’s that do not extend to a member of FL,

3. if FK = ∅ for some K , return False,
4. repeat (2) & (3) as long as something changes, else return True.

For PCSP(A,B), run consistency on I as an instance of CSP(A). We
require that any consistent instance I has a homomorphism to B.

Problem 5
Characterise all finite template PCSPs solvable by local consistency.

affine integer programming

The basic affine integer program for an instance I of PCSP(A,B) is
the following system of equations over Z:

I variables are v i ,a for all i ∈ I , a ∈ A, and v i,a for all R , i ∈ R I, a ∈ RA,
I subject to ∑

a∈A v i ,a = 1 for each i ∈ I ,∑
a∈RA,aj=a v i,a = v ij ,a for each R and i ∈ R I.

This gives an algorithm for PCSP(A,B): solve the BAIP of I over A,
and return True if it has a solution, else return False.

I The same as asking if Σ(A, I) is satisfied by affine functions over Z.
I The applicability of BAIP are characterised via alternating functions.

linear programming

The basic linear program for an instance I of PCSP(A,B) is the
same as BAIP with the exception that the variables are taking
values in Q ∩ [0, 1].

I The same as asking if Σ(A, I) is satisfied by convex combinations
over Q.

I Such linear programs are solvable in polynomial time, and therefore
give a polynomial time algorithm for PCSPs in a similar way as BAIP.

I The applicability of BLP is characterised by symmetric functions.

Problem 6
Is there a (finite template) PCSP(A,B) which is solvable by some level
of Sherali-Adams but it is not solvable by local consistency?

Brakensiek-Guruswami algorithm

Assume I is an instance of PCSP(A,B).

1. solve the BLP program for I, if no solution return False, else pick a
solution∗ v ,

2. start with the BAIP for I with variables w−, and add the equation
w− = 0 whenever v− = 0.

3. solve the resulting AIP, if no solution return False else return True.

Theorem [Brakensiek, Guruswami, Wrochna, Živný, ‘20]
The above algorithm solves PCSP(A,B) iff pol(A,B) contains for
all k a function f satisfying

f (x1, ... , xk , y1, ... , yk+1) ≈ f (xπ(1), ... , xπ(k), yσ(1), ... , yσ(k+1))

for all permutations π,σ.

an algorithm

I Every tractable PCSP that I am aware of is either a homomorphic
relaxation of a finite template CSP with a Siggers polymorphism, or
solvable by Brakensiek-Guruswami algorithm!

I Unfortunately, BG algorithm does not solve all CSPs with Siggers
(e.g., C2 + C3). We need a refinement.

Conjecture 7
When we replace LP with Sherali-Adams in the first step of BG
algorithm, the resulting algorithm solves all finite template CSPs with
Siggers polymorphism.

Prize for a negative answer. A bottle of fine single malt Scotch
whisky.

�

	beyond gadget reductions
	problems
	power of algorithms

