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VARIETIES OBEYING HOMOTOPY LAWS
WALTER TAYLOR

The algebraic structure of a topological algebra .2/ influences its topological
structure in a way which is profound but not well understood. (See § 7 below
for various examples.) Here we examine this influence rather generally, and
give a fairly complete analysis of one of the many forms it can take, namely,
the influence of the identities of %/ on the group identities obeyed by the
homotopy group (or groups of the components) of 7. For ¥~ a variety (i.e.
class of algebras defined by identities), and X a group law, we say that ¥~ obeys
X in homotopy if and only if every arc-component of every topological algebra
in 7 has fundamental group obeying \. Our investigation of this relation was
inspired by the much earlier results of Schreier [44], who proved in 1924 that
topological groups have commutative homotopy (strengthened versions are
due to Cartan, Pontrjagin and Hopf), and Wallace [52], who proved in 1953
that topological lattices are homotopically trivial (see also [12] and [8]).

Our main theorem (3.2 below) states that %~ obeys X in homotopy if and only
if every group in the idempotent reduct of ¥~ obeys \. As a corollary, we see that
for fixed \, “?” obeys \ in homotopy"' is a Malcev-definable (see [46], [40] or
[3]) property of %”. The hard part of the theorem is constructing a topological
algebra in?” whose fundamental group may fail to obey . We do this via



Theorem

If a topological space X has a Taylor polymorphism, then 7,(X)
are Abelian for all n > 0.

A polymorphism of a topological space X is a continuous map X" — X,
a polymorphism a group G is a group homomorphism G” — G, etc.
Theorem

The following are equivalent for any group identity t &~ s and a
linear idempotent Maltsev condition X

1. If pol(X) satisfies X then m1(X) = t = s.
2. If pol(X) satisfies X then 7,(X) = t ~ s forall n > 0.
3. If pol(G) satisfies X then G =t = s.



Sketch of a proof

Lemma
For all topological spaces X, and all n > 0, there is a minion
homomorphism pol™(X) — pol(,(X)).

A minion homomorphism is a mapping &: .# — ./ that preserves
taking minors, i.e., forall f € .#(" and 7: [n] = [m],

E(F)Xn(ays s Xm(n)) = E(F(Xr1)s -+ Xn(n)))-

Lemma
If a functor [ preserves products then there is a minion

homomorphism
pol(A, B) — pol(T'A,TB)

forall A, B.



Sketch of a proof

Theorem

The following are equivalent for any group identity t ~ s and a linear
idempotent Maltsev condition X:

1. If pol(X) satisfies * then m1(X) = t =~ s.
2. If pol(X) satisfies ¥ then m,(X) |= t ~ s for all n > 0.
3. If pol(G) satisfies X then G |= t ~ s.

The previous slide shows (3—2). (2—1) is trivial.

Lemma (1—3)

There is a functor B: Grp — Top such that m1(BG) = G, and it
preserves products!



Promise constraint satisfaction

Fix two finite relational structures A, B in the same finite language
with a homomorphism A — B.
PCSP(A, B) (search)

Given a finite structure I that maps homomorphically to A,
find a homomorphism h: I — B.

We will talk about PCSP(Co 1, K3).

Conjecture

PCSP(H, K.) is NP-complete for any non-bipartite loopless H and
any c such that H is c-colourable.



The goal

A polymorphism from A to B is a homomorphism A" — B. The set of all
polymorphisms pol(A, B) form a function minion.

Theorem

If pol(A, B) allows a minion homomorphism to a minion of
bounded essential arity, then PCSP(A, B) is NP-hard.



A way

Graph — hTop — Grp

A functor Graph — hTop that preserves products”
For aset V, AV is the standard simplex with V/ vertices, i.e.,

AV ={xe0,1]Y:> A =1}

Let G be a graph, we construct a topological space Bx(G) as the
subspace of AV(¢) x AV(€) consisting of points (), p) such that

{v: Xy >0} x{v:p, >0} C E(G).

“ up to homotopy equivalence
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The final piece

We compose two minion homomorphisms:

pol( Cok+1, K3) B, poI(Sl, 51) EN pol(Z)

Togeté&: pO|(C2k+1, K3) — pO|(Z).

Lemma

If # is a locally finite minion' and &: .# — pol(Z) is a minion
homomorphism then the image of .# under £ has bounded essential
arity.

" a minion . is locally finite if .# (" is finite for all n.



The result

Theorem

For each k > 0, itis NP-hard to find a 3-colouring of a graph that
maps to Cox1.
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