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Why is algebraic topology so effective in computational complexity
of CSPs?



Why is homotopy theory so effective in computational complexity
of CSPs?



Why?

An operation t : An → A is Taylor

t(x ∗ ... ∗) ≈ t(y ∗ ... ∗)
t(∗ x ... ∗) ≈ t(∗ y ... ∗)

...
t(∗ ∗ ... x) ≈ t(∗ ∗ ... y)

for all x , y ∈ A.

Theorem [Taylor, 1977].
If an idempotent variety satisfies a non-trivial Maltsev
condition, then it has a Taylor term.
t : An → A is idempotent if t(x , ... , x) ≈ x .

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only (non-trivial) H-colouring problem
that is solvable in polynomial time is 2-colouring.

Algebraic proofs by:
▶ [Bulatov, 2005],
▶ [Siggers, 2010], and
▶ [Kun & Szegedi, 2016].

Corollary [Siggers, 2010].
A locally finite variety with a Taylor term has a 6-ary
term s satisfying

s(x y x z y z) ≈
s(y x z x z y)
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Why is homotopy theory so effective in computational complexity
of CSPs?

Part I.What problems am I talking about?



Graph colouring

G

H

Given two graphs G = (VG ,EG ) and H = (VH ,EH), a graph homomorphism G → H is a mapping
h : VG → VH that preserves edges,

uv ∈ EG ⇒ h(u)h(v) ∈ EH .

Example. A colouring of a graph G with k colours is just a homomorphism c : G → Kk .
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The H-colouring problem

Given two graphs G = (VG ,EG ) and H = (VH ,EH), a graph homomorphism G → H is a mapping
h : VG → VH that preserves edges,

uv ∈ EG ⇒ h(u)h(v) ∈ EH .

H-colouring
Fix a graph H (called template). Given a graph G , decide whether there is a homomorphism G → H .

▶ K2-colouring is easy (it is solvable in logspace [Reingold, 2005]);
▶ Kk -colouring is NP-complete for all k > 2.
▶ What about other graphs H?

Theorem [Hell & Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that is solvable in polynomial time is 2-colouring.



Outline of a new proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise contractible.

3. Use Brower’s fixed-point theorem to show that
H has a loop if H is not bipartite.



Why is homotopy theory so effective in computational complexity
of CSPs?

Part II.What the . . . is the solution space of H-colouring?



Solution posets: Multihomomorphisms

A multihomomorphism is a function
f : V (G ) → 2V (H) \ {∅} such that, for all edges
uv ∈ E (G ), we have that

f (u)× f (v) ⊆ E (H).

▶ Multihomomorphisms are naturally ordered

f ≤ g ⇔ f (u) ⊆ g(u) for all u

▶ mhom(G ,H) is the poset of
multihomomorphisms.

K2 → K3

0 1 →
0 1

2
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Solution spaces

Given graphs G and H , we define the space

Hom(G ,H) = |N mhom(G ,H)|

▶ The vertices are multihomomorphisms,
▶ f and g are connected by an arc if f ≤ g ,
▶ {f , g , h} form a triangle if f ≤ g ≤ h,
▶ etc.

We view this as the solution space of instance G of
H-colouring.

Example. Hom(K2,K3) ≃ S1.
Example. Inmhom(K2,K4) we have:

01 ≤ 02|1 ≤ 02|13
and

01 ≤ 0|12 ≤ 0|123

which creates 2-dimensional faces.

Two colourings f and g are connected if g can be obtained from f by changing one value at a time while
remaining a valid colouring.



4-colourings of K2
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4-colourings of K2
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Why is homotopy theory so effective in computational complexity
of CSPs?

Part III. A proof



Outline of the proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise
contractible.

3. Use Brower’s fixed-point theorem to show that
H has a loop if H is not bipartite.
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Algebraic approach to the constraint satisfaction problem

An operation t : An → A is Taylor

t(x ∗ ... ∗) ≈ t(y ∗ ... ∗)
t(∗ x ... ∗) ≈ t(∗ y ... ∗)

...
t(∗ ∗ ... x) ≈ t(∗ ∗ ... y)

for all x , y ∈ A.

Lemma [Taylor, 1977].
If a topological space X admits a continuous
idempotent Taylor operation t , then π1(X ) is Abelian.
t : An → A is idempotent if t(x , ... , x) ≈ x .

Theorem (CSP Dichotomy).
A CSP with a finite template A either
1. admits a Taylor polymorphism t : An → A, and is

in P [Bulatov, 2017; Zhuk, 2017]; or
2. does not admit a Taylor polymorphism and is

NP-complete [Bulatov, Jeavons, Krokhin, 2005].

Theorem [Bulatov, 2005; Siggers, 2005].
A loopless core graph H has a Taylor polymorphism if
and only if it is bipartite.
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Outline of the proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise
contractible.

3. Use Brower’s fixed-point theorem to show that
H has a loop if H is not bipartite.



Taylor→ contractibility

A topological space X is called contractible if it is homotopy equivalent to a point {∗}. For us, this is equivalent to
πn(X ) = 0 for all n ≥ 0.

Theorem [Larose, Zádori, 2005].
Every connected finite poset that admits a monotone Taylor operation is contractible.

The problem is thatmhom(G ,H) is not Taylor if H is Taylor!

Nevertheless, there is a ‘lax-Taylor’ monotone operation t : mhom(G ,H)n → mhom(G ,H) that satisfies:

t(x ∗ ... ∗) ≥ s1(x , y) ≤ t(y ∗ ... ∗)
t(∗ x ... ∗) ≥ s2(x , y) ≤ t(∗ y ... ∗)

...
t(∗ ∗ ... x) ≥ sn(x , y) ≤ t(∗ ∗ ... y)

for all x , y ∈ A.

Theorem [Meyer, O, 2025].
Every connected finite poset that admits a monotone lax-Taylor operation is contractible, and therefore
Hom(G ,H) is component-wise contractible for all G if H has a Taylor polymorphism.
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4-colourings of K2

Hence, 4-colouring is NP-hard!



Outline of the proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

1. Identify which problems are NP-hard using the
algebraic approach to the constraint satisfaction
problem.

2. If H-colouring is not NP-hard, show that its
solution spaces are component-wise
contractible.

3. Use Brower’s fixed-point theorem to show
that H has a loop if H is not bipartite.



A fixed-point theorem

Theorem (Brower’s fixed-point theorem).
Every continuous function f : Dn → Dn has a fixed point, i.e., there exists x ∈ Dn such that f (x) = x .

More generally: If X is a contractible compact CW-complex, then every function f : X → X has a fixed
point.
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A Z2 action on Hom(K2,H)

The space Hom(K2,H) admits an action of the group
Z2, i.e., there is a homeomorphism

ϕ : Hom(K2,H) → Hom(K2,H)

such that ϕ2(x) = x .

▶ ϕ is defined by flipping the two values of each
multihomomorphism.

▶ flipping the two values induces a monotone
involution on the poset, and hence a continuous
involution on the space.

▶ ϕ does not have a fixed point, otherwise H would
contain an edge uu.
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The proof

Theorem [Hell, Nešetřil, 1990].
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

H

Proof. Assume that H is not-bipartite, and consider the
space X = Hom(K2,H).
Observe that the space admits a fixed-point free Z2-action
ϕ : X → X that for each multihomomorphismm flips the
values ofm(0) andm(1).
If H is not-bipartite then ϕ fixes a connected component
of X . Indeed, if uv is an edge of an odd cycle of H then uv
is connected to vu = ϕ(uv).
If H admitted a Taylor polymorphism,mhom(K2,H) would
admit a lax-Taylor operation, and all its connected
component would be contractible.
Hence, ϕ which acts on the component of uv has a fixed
point, the contradiction. ■



Algebraic consequences

Theorem [Bulatov, 2005].
Every finite non-bipartite graph with a Taylor
polymorphism has a loop.

Theorem.
Every finite H with a Taylor polymorphism and a
homomorphism NAE → H has a (hyper)loop.

Theorem.
Every finite H with a Taylor polymorphism and a
homomorphism D+

2 → H has a (hyper)loop.

Corollary.
Every locally finite Taylor variety has the following terms:

▶ a 6-ary Siggers term s satisfying
s(x y x z y z) ≈
s(y x z x z y)

▶ a 6-ary Olšák term o satisfying
o(y x x x y y) ≈
o(x y x y x y) ≈
o(x x y y y x)

▶ a 12-ary term d satisfying
d(y x x z x x x z y x y z) ≈
d(x y x x z x y x z z x y) ≈
d(x x y x x z z y x y z x)

■
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