A topological approach to CSPs and its algebraic consequences
Jakub Oprsal et al.

UNIVERSITYO©F
BIRMINGHAM

N

joint work with Sebastian Meyer (TU Dresden) &
‘B



Why is algebraic topology so effective in computational complexity
of CSPs?



Why is homotopy theory so effective in computational complexity
of CSPs?



Why?



Why?

An operation t: A" — Ais

(<« o )Ry
(- xRy
(- )& i
forall x, y € A.
Theorem

If an idempotent variety satisfies a
, then it has a Taylor term.

: A" — Ais idempotent if t(x, ..., x) & x.



Why?

An operation t: A" — Ais

(<« o )Ry
(- xRy
(- )& i
forall x, y € A.
Theorem

If an idempotent variety satisfies a
, then it has a Taylor term.

: A" — Ais idempotent if t(x, ..., x) & x.

Corollary

A locally finite variety with a Taylor term has a 6-ary
term s satisfying

(x v x z y z) =
(v x z x z vy)



Why?

An operation t: A" — Ais

(x = .. =)=y =
(+ x .. x)=i(x vy
(x = . x)=i(x =
forall x, y € A.
Theorem

If an idempotent variety satisfies a
, then it has a Taylor term.

: A" — Ais idempotent if t(x, ..., x) & x.

Theorem

Unless P = NP, the only (non-trivial) H-colouring problem
that is solvable in polynomial time is 2-colouring.
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Why is homotopy theory so effective in computational complexity
of CSPs?

Part I. What problems am | talking about?
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Graph colouring

e

Given two graphs G = (V;, Eg) and H = (Vy, Ey), a G — His amapping
h: Ve — Vjy that preserves edges,
uv € Eg = h(u)h(v) € Ep.

Example. A of a graph G with k colours is just a homomorphism c: G — K.



The H-colouring problem

Given two graphs G = (V;, Eg)and H = (Vy, Ey), a G — His amapping
: Vo — Vjy that preserves edges,
uv € Ec = h(u)h(v) € Ep.

H-colouring
Fix a graph H (called template). Given a graph G, decide whether there is a G — H.
» K,-colouring is easy (it is solvable in logspace )

» Kj-colouring is NP-complete for all k > 2.
» What about other graphs H?

Theorem .
Unless P = NP, the only graph H-colouring problem that is solvable in polynomial time is 2-colouring.



Outline of a new proof

Theorem .

Unless P = NP, the only graph H-colouring problem that

is solvable in polynomial time is 2-colouring. 1. Identify which problems are NP-hard using the
algebraic approach to the

2. If H-colouring is not NP-hard, show that its
solution spaces are

H
>. 3. Use Brower's fixed-point theorem to show that

H has a loop if H is not bipartite.




Why is homotopy theory so effective in computational complexity
of CSPs?

Part Il. What the ... is the solution space of H-colouring?



Solution posets: Multihomomorphisms
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f: V(G) — 2YUD\ {B} such that, for all edges
uv € E(G), we have that

f(u) x f(v) € E(H).
» Multihomomorphisms are naturally ordered
f<g<ef(u) Cg(u)forallu

» mhom(G, H) is the
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Solution spaces

Given graphs G and H, we define the space
Example.  Hom(Ky, K3) =~ S*.

Hom(G, H) = [N mhom(G, H)| Example.  In mhom(K>, K1) we have:
» The vertices are multihomomorphisms, 01 <02]1<02|13
» f and g are connected by an arcif f < g, and
» {f,g, h} formatriangleif f < g < h,
> etc. 01 <0J12 <0]123
We view Fh|s as the of instance G of which creates 2-dimensional faces.
H-colouring.
Two colourings f and g are if g can be obtained from f by changing one value at a time while

remaining a valid colouring.
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Why is homotopy theory so effective in computational complexity
of CSPs?

Part lll. A proof



Outline of the proof
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is solvable in polynomial time is 2-colouring. 1. ldentify which problems are NP-hard using the
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solution spaces are
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Algebraic approach to the constraint satisfaction problem

An operation t: A” — Ais

(x = iy x ©)
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¢ GRi )

forall x, y € A.

Lemma .
If a topological space X admits a continuous
idempotent

: A7 — Ais idempotent if t(x, ..., x) = x.

, then 71(X) is Abelian.

Theorem (CSP Dichotomy).
A CSP with a finite template A either
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inP ; or

A" — A and is
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A topological space X is called if it is homotopy equivalent to a point {x}. For us, this is equivalent to
w,(X) =0foralln>0.

Theorem
Every connected finite poset that admits a monotone Taylor operation is

The problem is that mhom(G, H) is not Taylor if H is Taylor!

Nevertheless, there is a ‘lax-Taylor monotone operation t: mhom(G, H)" — mhom(G, H) that satisfies:

(x + e DZs(n) <y 6o )
t(x x . o) Zsax,y)<t(x y .. %)
t(x ) > salx, ) < ¢ v)

forall x,y € A.

Theorem

Every connected finite poset that admits a monotone lax-Taylor operation is contractible, and therefore
Hom(G, H) is for all G if H has a Taylor polymorphism.



4-colourings of K,

Hence, 4-colouring is NP-hard!



Outline of the proof

Theorem .
Unless P = NP, the only graph H-colouring problem that

is solvable in polynomial time is 2-colouring. 1. ldentify which problems are NP-hard using the
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3
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that H has a loop if / is not bipartite.
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Theorem (Brower's fixed-point theorem).
Every continuous function f : D" — D" has a , I.e., there exists x € D" such that f(x) = x.



A fixed-point theorem

Theorem (Brower's fixed-point theorem).
Every continuous function f : D" — D" has a , I.e., there exists x € D" such that f(x) = x.

More generally: If X is a contractible compact CW-complex, then every function f: X — X has a
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The proof

Theorem .
Unless P = NP, the only graph H-colouring problem that
is solvable in polynomial time is 2-colouring.

T

Proof. Assume that H is not-bipartite, and consider the
space X = Hom(K>, H).

Observe that the space admits a fixed-point free Z,-action
¢®: X — X that for each multihomomorphism m flips the
values of m(0) and m(1).

If H is not-bipartite then ¢ fixes a connected component
of X. Indeed, if uv is an edge of an odd cycle of H then

is connected to vu = ¢(uv).

If H admitted a Taylor polymorphism, mhom(K,, H) would
admit a lax-Taylor operation, and all its connected
component would be contractible.

Hence, ¢ which acts on the component of uv has a fixed
point, the contradiction. |
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