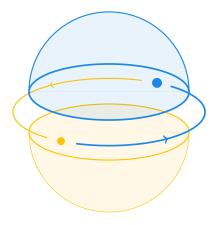
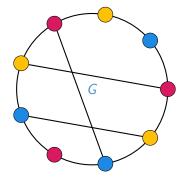
Homotopy and complexity of graph colouring

Jakub Opršal et al.

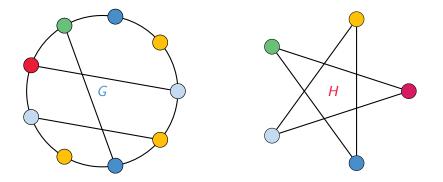


Part I. What problems am I talking about?

Graph colouring



Graph colouring



Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$, a graph homomorphism $G \to H$ is a mapping $h: V_G \to V_H$ that preserves edges,

$$uv \in E_G \Rightarrow h(u)h(v) \in E_H.$$

Example. A colouring of a graph *G* with *k* colours is just a homomorphism $c: G \to K_k$.

The *H*-colouring problem

Given two graphs $G = (V_G, E_G)$ and $H = (V_H, E_H)$, a graph homomorphism $G \to H$ is a mapping $h: V_G \to V_H$ that preserves edges,

$$uv \in E_G \Rightarrow h(u)h(v) \in E_H$$

H-colouring

Fix a graph *H* (called *template*). Given a graph *G*, decide whether there is a homomorphism $G \rightarrow H$.

- ► K₂-colouring is easy (it is solvable in logspace [Reingold, 2005]);
- K_k -colouring is NP-complete for all k > 2.
- ► What about other graphs *H*?

Theorem [Hell & Nešetřil, 1990].

Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.

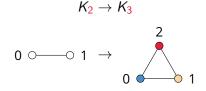
Part II. What the ... is the solution space of *H*-colouring?

A multihomomorphism is a function $f: V(G) \rightarrow 2^{V(H)} \setminus \{\emptyset\}$ such that, for all edges $uv \in E(G)$, we have that

 $f(\underline{u}) \times f(\underline{v}) \subseteq E(\underline{H}).$

Multihomomorphisms are naturally ordered

 $f \leq g \Leftrightarrow f(u) \subseteq g(u)$ for all u



A multihomomorphism is a function $f: V(G) \rightarrow 2^{V(H)} \setminus \{\emptyset\}$ such that, for all edges $uv \in E(G)$, we have that

 $f(u) \times f(v) \subseteq E(H).$

Multihomomorphisms are naturally ordered

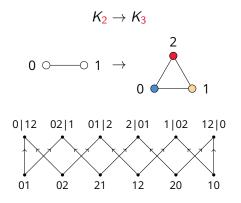
 $f \leq g \Leftrightarrow f(u) \subseteq g(u)$ for all u

A multihomomorphism is a function $f: V(G) \rightarrow 2^{V(H)} \setminus \{\emptyset\}$ such that, for all edges $uv \in E(G)$, we have that

 $f(u) \times f(v) \subseteq E(H).$

Multihomomorphisms are naturally ordered

 $f \leq g \Leftrightarrow f(u) \subseteq g(u)$ for all u

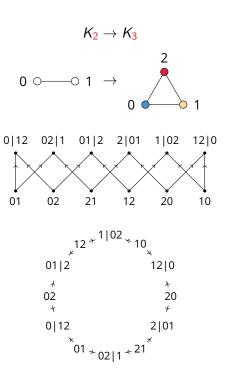


A multihomomorphism is a function $f: V(G) \rightarrow 2^{V(H)} \setminus \{\emptyset\}$ such that, for all edges $uv \in E(G)$, we have that

 $f(u) \times f(v) \subseteq E(H).$

Multihomomorphisms are naturally ordered

 $f \leq g \Leftrightarrow f(u) \subseteq g(u)$ for all u



Solution spaces

Given graphs G and H, we define the space

Hom(G, H) = |N mhom(G, H)|

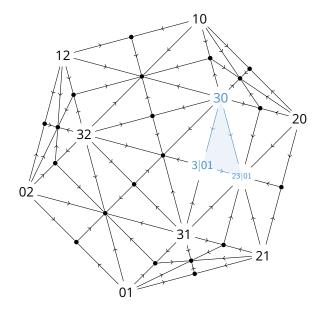
- ► The vertices are multihomomorphisms,
- f and g are connected by an arc if $f \leq g$,
- {f, g, h} form a triangle if $f \le g \le h$,
- etc.

We view this as the solution space of instance G of H-colouring.

Example. Hom $(K_2, K_3) \simeq S^1$. Example. In mhom (K_2, K_4) we have: $01 \le 02|1 \le 02|13$ and $01 \le 0|12 \le 0|123$ which creates 2-dimensional faces.

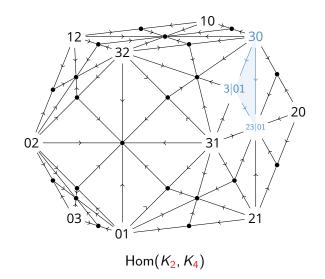
Two colourings f and g are connected if g can be obtained from f by **changing one value at a time** while remaining a valid colouring.

4-colourings of K_2

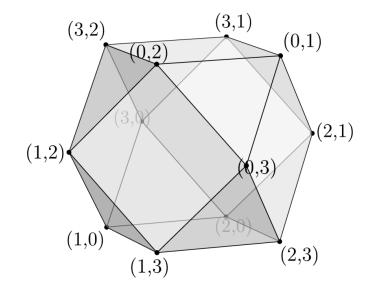


 $\operatorname{Hom}(K_2, K_4)$

4-colourings of K_2

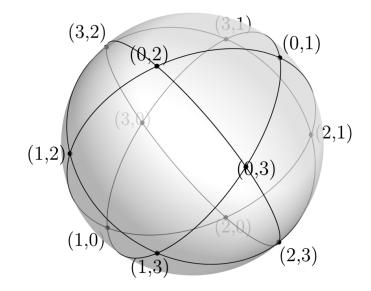


4-colourings of K₂



 $\operatorname{Hom}(K_2, K_4)$

4-colourings of K₂



 $\operatorname{Hom}(K_2, K_4)$

Part III. What can we say about complexity in terms of topology?

Conjecture [Brakensiek, Guruswami, 2018].

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with c colours is NP-complete for all c > 2.

- Krokhin, O (2019). The complexity of 3-colouring H-colourable graphs. Symposium on Foundations of Computer Science, FOCS 2019.
- [2] Wrochna, Živný (2020). Improved hardness for H-colourings of G-colourable graphs. Symposium on Discrete Algorithms, SODA 2020.
- [3] Avvakumov, Filakovský, O, Tasinato, & Wagner (2025).
 Hardness of 4-colouring G-colourable graphs. Accepted to STOC 2025.

Theorem.

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with 4 colours is NP-complete.

Conjecture [Brakensiek, Guruswami, 2018].

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with c colours is NP-complete for all c > 2.

- Krokhin, O (2019). The complexity of 3-colouring H-colourable graphs. Symposium on Foundations of Computer Science, FOCS 2019.
- [2] Wrochna, Živný (2020). Improved hardness for H-colourings of G-colourable graphs. Symposium on Discrete Algorithms, SODA 2020.
- [3] Avvakumov, Filakovský, O, Tasinato, & Wagner (2025).
 Hardness of 4-colouring G-colourable graphs. Accepted to STOC 2025.

Theorem.

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with 4 colours is NP-complete. Solution spaces of tractable problems are simple.

Conjecture [Brakensiek, Guruswami, 2018].

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with *c* colours is NP-complete for all c > 2.

- Krokhin, O (2019). The complexity of 3-colouring H-colourable graphs. Symposium on Foundations of Computer Science, FOCS 2019.
- [2] Wrochna, Živný (2020). Improved hardness for H-colourings of G-colourable graphs. Symposium on Discrete Algorithms, SODA 2020.
- [3] Avvakumov, Filakovský, O, Tasinato, & Wagner (2025).
 Hardness of 4-colouring *G*-colourable graphs. *Accepted to* STOC 2025.

Theorem.

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with 4 colours is NP-complete.

Solution spaces of tractable problems are simple.

[4] Schnider, Weber (2024). A topological version of Schaefer's dichotomy theorem. *Symposium on Computational Geometry, SoCG 2024*.

Conjecture [Brakensiek, Guruswami, 2018].

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with *c* colours is NP-complete for all c > 2.

- Krokhin, O (2019). The complexity of 3-colouring H-colourable graphs. Symposium on Foundations of Computer Science, FOCS 2019.
- [2] Wrochna, Živný (2020). Improved hardness for H-colourings of G-colourable graphs. Symposium on Discrete Algorithms, SODA 2020.
- [3] Avvakumov, Filakovský, O, Tasinato, & Wagner (2025).
 Hardness of 4-colouring G-colourable graphs. Accepted to STOC 2025.

Theorem.

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with 4 colours is NP-complete.

Solution spaces of tractable problems are simple.

- [4] Schnider, Weber (2024). A topological version of Schaefer's dichotomy theorem. *Symposium on Computational Geometry, SoCG 2024*.
- [5] Meyer, O (2025). A topological proof of the Hell-Nešetřil dichotomy. Symposium on Discrete Algorithms, SODA 2025.

Theorem [Hell, Nešetřil, 1990].

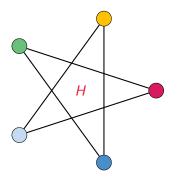
Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.

Part IV. A proof

Outline of the proof

Theorem [Hell, Nešetřil, 1990].

Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.

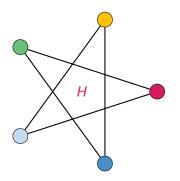


- 1. Identify which problems are NP-hard using the *algebraic approach to the constraint satisfaction problem*.
- 2. If *H*-colouring is not NP-hard, show that its solution spaces are component-wise contractible.
- 3. Use Brower's fixed-point theorem to show that *H* has a loop if *H* is not bipartite.

Outline of the proof

Theorem [Hell, Nešetřil, 1990].

Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.



- 1. Identify which problems are NP-hard using the algebraic approach to the constraint satisfaction problem.
- 2. If *H*-colouring is not NP-hard, show that its solution spaces are component-wise contractible.
- 3. Use Brower's fixed-point theorem to show that *H* has a loop if *H* is not bipartite.

An operation $t: A^n \to A$ is Taylor

$$t(x * ... *) = t(y * ... *)$$

$$t(* x ... *) = t(* y ... *)$$

$$\vdots$$

$$t(* * ... x) = t(* * ... y)$$

for all $x, y \in A$.

An operation $t: A^n \to A$ is Taylor

$$t(x * \dots *) = t(y * \dots *)$$

$$t(* x \dots *) = t(* y \dots *)$$

$$\vdots$$

$$t(* * \dots x) = t(* * \dots y)$$

for all $x, y \in A$.

Theorem (CSP Dichotomy).

- A CSP with a finite template A is either
 - admits a Taylor homomorphism t: Aⁿ → A, and is in P [Bulatov, 2017; Zhuk, 2017]; or
 - 2. does not admit a Taylor homomorphism and is NP-complete [Bulatov, Jeavons, Krokhin, 2005].

An operation $t: A^n \to A$ is Taylor

$$t(x * \dots *) = t(y * \dots *)$$

$$t(* x \dots *) = t(* y \dots *)$$

$$\vdots$$

$$t(* * \dots x) = t(* * \dots y)$$

for all $x, y \in A$.

Theorem (CSP Dichotomy).

A CSP with a finite template A is either

- admits a Taylor homomorphism t: Aⁿ → A, and is in P [Bulatov, 2017; Zhuk, 2017]; or
- 2. does not admit a Taylor homomorphism and is NP-complete [Bulatov, Jeavons, Krokhin, 2005].

Theorem [Bulatov, 2005; Siggers, 2005].

A (core) graph H has a Taylor homomorphism if and only if it is bipartite.

An operation $t: A^n \to A$ is Taylor

$$t(x * ... *) = t(y * ... *) t(* x ... *) = t(* y ... *) \vdots$$

t(* * ... x) = t(* * ... y)

for all $x, y \in A$.

Lemma [Taylor, 1977]. If a topological space X admits a continuous idempotent Taylor operation t, then $\pi_1(X)$ is Abelian. $t: A^n \to A$ is idempotent if t(x, ..., x) = x.

Theorem (CSP Dichotomy).

- A CSP with a finite template A is either
 - admits a Taylor homomorphism t: Aⁿ → A, and is in P [Bulatov, 2017; Zhuk, 2017]; or
 - 2. does not admit a Taylor homomorphism and is NP-complete [Bulatov, Jeavons, Krokhin, 2005].

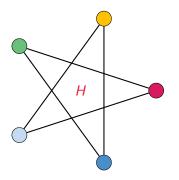
Theorem [Bulatov, 2005; Siggers, 2005].

A (core) graph H has a Taylor homomorphism if and only if it is bipartite.

Outline of the proof

Theorem [Hell, Nešetřil, 1990].

Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.



- 1. Identify which problems are NP-hard using the *algebraic approach to the constraint satisfaction problem*.
- 2. If *H*-colouring is not NP-hard, show that its solution spaces are component-wise contractible.
- 3. Use Brower's fixed-point theorem to show that *H* has a loop if *H* is not bipartite.

$\textbf{Taylor} \rightarrow \textbf{contractibility}$

A topological space X is called contractible if it is homotopy equivalent to a point {*}. For us, this is equivalent to $\pi_n(X) = 0$ for all $n \ge 0$.

Theorem [Larose, Zádori, 2005].

Every connected finite poset that admits a monotone Taylor operation is contractible.

$\textbf{Taylor} \rightarrow \textbf{contractibility}$

A topological space X is called contractible if it is homotopy equivalent to a point {*}. For us, this is equivalent to $\pi_n(X) = 0$ for all $n \ge 0$.

Theorem [Larose, Zádori, 2005]. Every connected finite poset that admits a monotone Taylor operation is contractible.

The problem is that Hom(G, H) is not Taylor if H is Taylor!

Taylor \rightarrow contractibility

A topological space X is called contractible if it is homotopy equivalent to a point {*}. For us, this is equivalent to $\pi_n(X) = 0$ for all $n \ge 0$.

Theorem [Larose, Zádori, 2005]. *Every connected finite poset that admits a monotone Taylor operation is contractible.*

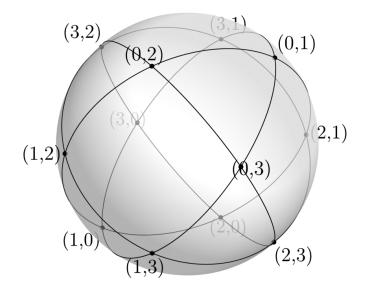
The problem is that Hom(G, H) is not Taylor if H is Taylor!

Theorem [Meyer, 2024; Meyer, 0, 2025].

If H admits a Taylor homomorphism, then Hom(G, H) is component-wise contractible for all G.

Therefore, unless *H*-colouring is NP-hard, all **solution spaces are component-wise contractible!**

4-colourings of K₂

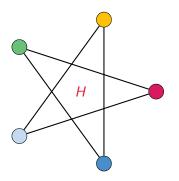


Hence, 4-colouring is NP-hard!

Outline of the proof

Theorem [Hell, Nešetřil, 1990].

Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.



- 1. Identify which problems are NP-hard using the *algebraic approach to the constraint satisfaction problem*.
- 2. If *H*-colouring is not NP-hard, show that its solution spaces are component-wise contractible.
- 3. Use Brower's fixed-point theorem to show that *H* has a loop if *H* is not bipartite.

A fixed-point theorem

Theorem (Brower's fixed-point theorem).

Every continuous function $f: D^n \to D^n$ *has a fixed point, i.e., there exists* $x \in D^n$ *such that* f(x) = x.

A fixed-point theorem

Theorem (Brower's fixed-point theorem).

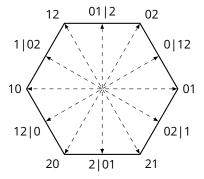
Every continuous function $f: D^n \to D^n$ has a fixed point, i.e., there exists $x \in D^n$ such that f(x) = x.

More generally: If X is a contractible compact CW-complex, then every function $f: X \to X$ has a fixed point.

A \mathbb{Z}_2 action on Hom(K_2 , H)

The space Hom(K_2 , H) admits an action of the group \mathbb{Z}_2 , i.e., there is a homeomorphism

 ϕ : Hom $(K_2, H) \rightarrow$ Hom (K_2, H)

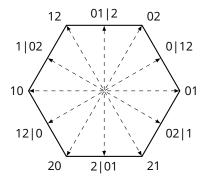


A \mathbb{Z}_2 action on Hom(K_2 , H)

The space Hom(K_2 , H) admits an action of the group \mathbb{Z}_2 , i.e., there is a homeomorphism

 ϕ : Hom $(K_2, H) \rightarrow$ Hom (K_2, H)

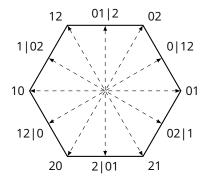
- \u03c6 is defined by flipping the two values of each
 multihomomorphism.
- flipping the two values induces a monotone involution on the poset, and hence a continuous involution on the space.



The space Hom(K_2 , H) admits an action of the group \mathbb{Z}_2 , i.e., there is a homeomorphism

 ϕ : Hom $(K_2, H) \rightarrow$ Hom (K_2, H)

- ▶ *φ* is defined by flipping the two values of each multihomomorphism.
- flipping the two values induces a monotone involution on the poset, and hence a continuous involution on the space.
- \$\phi\$ does not have a fixed point, otherwise \$\mathcal{H}\$ would contain an edge \$uu\$.

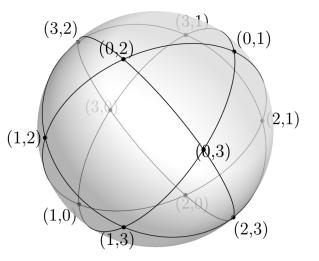


A \mathbb{Z}_2 action on Hom(K_2 , H)

The space Hom(K_2 , H) admits an action of the group \mathbb{Z}_2 , i.e., there is a homeomorphism

 ϕ : Hom(K_2 , H) \rightarrow Hom(K_2 , H)

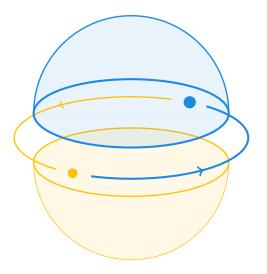
- ▶ *φ* is defined by flipping the two values of each multihomomorphism.
- flipping the two values induces a monotone involution on the poset, and hence a continuous involution on the space.
- \$\phi\$ does not have a fixed point, otherwise \$\mathcal{H}\$ would contain an edge \$uu\$.



The space Hom(K_2 , H) admits an action of the group \mathbb{Z}_2 , i.e., there is a homeomorphism

 ϕ : Hom(K_2 , H) \rightarrow Hom(K_2 , H)

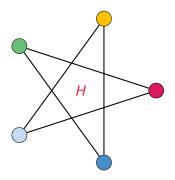
- ▶ *φ* is defined by flipping the two values of each multihomomorphism.
- flipping the two values induces a monotone involution on the poset, and hence a continuous involution on the space.
- \$\phi\$ does not have a fixed point, otherwise \$\mathcal{H}\$ would contain an edge \$uu\$.



The proof

Theorem [Hell, Nešetřil, 1990].

Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.



Proof. Assume that *H* is not-bipartite, and consider the space $X = Hom(K_2, H)$.

Observe that the space admits a fixed-point free \mathbb{Z}_2 -action $\phi: X \to X$ that for each multihomomorphism *m* flips the values of *m*(0) and *m*(1).

If *H* is not-bipartite then ϕ fixes a connected component of *X*. Indeed, if uv is an edge of an odd cycle of *H* then uv is connected to $vu = \phi(uv)$.

If *H* admitted a Taylor homomorphism, mhom(K_2 , *H*) would admit a lax-Taylor operation, and all its connected component would be contractible.

Hence, ϕ which acts on the component of uv has a fixed point, the contradiction.

Theorem [Meyer, 2024; Meyer, 0, 2025].

A constraint satisfaction problem is NP-complete, unless each connected component of the solution space is contractible (i.e., topologically trivial).

Corollary [Hell, Nešetřil, 1990].

Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.

Meyer, O (2025). A topological proof of the Hell-Nešetřil dichotomy. Symposium on Discrete Algorithms, SODA 2025.

Theorem [Meyer, 2024; Meyer, 0, 2025].

A constraint satisfaction problem is NP-complete, unless each connected component of the solution space is contractible (i.e., topologically trivial).

Corollary [Hell, Nešetřil, 1990].

Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.

Meyer, O (2025). A topological proof of the Hell-Nešetřil dichotomy. Symposium on Discrete Algorithms, SODA 2025.

- Krokhin, O (2019). The complexity of 3-colouring H-colourable graphs. Symposium on Foundations of Computer Science, FOCS 2019.
- [2] Wrochna, Živný (2020). Improved hardness for H-colourings of G-colourable graphs. Symposium on Discrete Algorithms, SODA 2020.
- [3] Avvakumov, Filakovský, O, Tasinato, & Wagner (2025).
 Hardness of 4-colouring *G*-colourable graphs. *Accepted to* STOC 2025.

Theorem.

Colouring graphs that are promised to map homomorphically to $C_{(2k+1)}$ with 4 colours is NP-complete.

- [4] Schnider, Weber (2024). A topological version of Schaefer's dichotomy theorem. *Symposium on Computational Geometry, SoCG 2024.*
- [5] Meyer, O (2025). A topological proof of the Hell-Nešetřil dichotomy. Symposium on Discrete Algorithms, SODA 2025.

Theorem [Meyer, 2024; Meyer, **0**, 2025].

A constraint satisfaction problem is NP-complete, unless each connected component of the solution space is contractible (i.e., topologically trivial).

Corollary [Hell, Nešetřil, 1990].

Unless P = NP, the only graph *H*-colouring problem that is solvable in polynomial time is 2-colouring.