Algebraic view on promise constraint satisfaction and hardness of coloring a D-colorable graph with 2D-1 colors

Jakub Opršal (TU Dresden)

Joint work with Jakub Bulín and Andrei Krokhin

Dagstuhl, June 5, 2018

CSP(A)

- 1. Pol(A) [Jeavons, Cohen, Gyssens, "97]
- 2. identities in Pol(A) [Bulatov, Jeavons, '01; BJK05]
- 3. height 1 identities in Pol(A) [Barto, Pinsker, O, '17]

Identity is of height 1 if it is of the form:

$$f(x_{\sigma(1)},\ldots,x_{\sigma(n)}) \approx g(x_{\pi(1)},\ldots,x_{\pi(m)}).$$

$$(\sigma: [n] \to [k], \pi: [m] \to [k])$$

No composition!

PCSP(A, B):

- 1. Pol(A, B) [Austrin, Håstad, Guruswami, '14; BG16a]
- 2. ??

Excuses

Polymorphisms of a pair of structures cannot be composed! We don't have clones, therefore there are no algebras involved!

3. height 1 identities in Pol(A, B)

 $Pol(K_d, K_{2d-2})$ is equationally trivial [Brakensiek, Guruswami, '16b].

Identities and the main theorem

A Mal'cev condition is a finite set of identities (functional equations).

Example.

$$o(x, x, y, y, y, x) \approx s(x, y)$$

$$o(x, y, x, y, x, y) \approx s(x, y)$$

$$o(y, x, x, x, y, y) \approx s(x, y)$$

Function symbols are variables! I.e., we usually ask for functions that satisfy the identities.

Theorem

If every height 1 Mal'cev condition satisfied by Pol(A, B) is satisfied in Pol(C, D) then PCSP(C, D) is log-space reducible to PCSP(A, B).

Example: Graph coloring from hypergraph coloring

Claim

It is NP-hard to distinguish between a graph that is 3-colorable and one that is not 5-colorable. Equivalently, $PCSP(K_3, K_5)$ is NP-hard.

Theorem (Dinur, Regev, Smyth, '05)

For each $K \geq 2$, it is NP-hard to distinguish between a 3-uniform hypergraph that is colorable by 2 colors, and one that is not colorable by K colors. Consequently, PCSP(NAE₂, NAE_K) is NP-hard for all K.

 NAE_k is a relational structure with universe [k] and a single ternary relation R_k saying 'the three entries are not all equal', i.e.,

$$R_k = \{(x, y, z) \in [k]^3 : x \neq y \text{ or } x \neq z\}.$$

Key point. Every height 1 Mal'cev condition satisfied in $Pol(K_3, K_5)$ is satisfied in $Pol(NAE_2, NAE_K)$.

Intermediate problem: Deciding identities

Fix N > 0. Let \mathcal{U} and \mathcal{V} be two disjoint sets of function symbols with arities $\leq N$.

MC(N):

Given $(\Sigma, \mathcal{U}, \mathcal{V})$, where Σ is a bipartite minor condition over \mathcal{U} and \mathcal{V} that involves at most N-ary function symbols, decide whether the condition is satisfied by projections.

A bipartite minor Mal'cev condition over $\mathcal U$ and $\mathcal V$ is a finite set of identities of the form

$$g(x_{\pi(1)},\ldots,x_{\pi(m)})\approx f(x_1,\ldots,x_n)$$

for some $\pi: [m] \to [n]$, $f \in \mathcal{U}$, and $g \in \mathcal{V}$.

Identities and label cover

Triviality of minor conditions

Label cover

$$(\Sigma, \mathcal{U}, \mathcal{V})$$
 (U, V, E, Π)

$$w(x, x, y) \approx s(x, y)$$
 $s \leftarrow w$ $\pi : 1 \rightarrow x$ $2 \rightarrow y$

Functions \equiv long codes of labels

Labels

Long code of $i \in [n]$ is

$$p_i : \mathbf{x} \to \mathbf{x}(i)$$

Commonly used with long code.

(a.k.a. the i-th projection).

Example: From PCSP(NAE₂, NAE_K) to MC(6)

- ▶ For each vertex v introduce a binary symbol t_v into \mathcal{V} .
- ► For each edge $e = (v_1, v_2, v_3)$, introduce a 6-ary f_e into U, and add constraints:

$$f_{e}(x, x, y, y, x) \approx t_{v_{1}}(x, y)$$
 $f_{e}(x, y, x, y, x, y) \approx t_{v_{2}}(x, y)$
 $f_{e}(y, x, x, x, y, y) \approx t_{v_{3}}(x, y)$
 $f_{v_{3}}(x, y)$

Few observations.

- ▶ A solution to the MC instance gives a solution to CSP(NAE₂).
- ▶ It is enough to have a solution in $Pol(NAE_2, NAE_K)$: The assignment $v \mapsto t_v(0, 1)$ is a solution.

Promise satisfaction of identities

Fix N and a set of functions \mathcal{A} .

Promise $MC_{\mathscr{A}}(N)$

Given $(\Sigma, \mathcal{U}, \mathcal{V})$, where Σ is a bipartite minor condition over \mathcal{U} and \mathcal{V} that involves at most N-ary function symbols, decide between:

- Σ is trivial, and
- \triangleright Σ is not satisfied in \mathscr{A} .

Theorem

Let $\mathcal{H}_K = \text{Pol}(NAE_2, NAE_K)$. PMC $_{\mathcal{H}_K}(6)$ is NP-hard for all $K \geq 2$.

Theorem

For every PCSP template (A, B) there exists N such that PCSP(A, B) is log-space reducible to $PMC_{\mathscr{A}}(N)$ where $\mathscr{A} = Pol(A, B)$.

Example: From PMC to PCSP

Hint

We can ask Is this minor condition satisfied by polymorphisms of a CSP template A? as an instance of CSP(A).

- ► For a PCSP template (A, B), we use just A to construct the instance.
- \blacktriangleright Warning! The graph is of exponential size in N.

Theorem

For every PCSP template (A, B) and all N, $PMC_{\mathscr{A}}(N)$ is log-space reducible to PCSP(A, B) where $\mathscr{A} = Pol(A, B)$.

Example

 $PMC_{\mathscr{K}}(6)$ is log-space reducible to $PCSP(K_3, K_5)$ ($\mathscr{K} = Pol(K_3, K_5)$).

The gap

Given that $\mathscr{A}=\operatorname{Pol}(A,A')$ satisfies all Mal'cev conditions satisfied in $\mathscr{B}=\operatorname{Pol}(B,B')$, we have log-space reductions:

$$\mathsf{PCSP}(\mathsf{B},\mathsf{B}') \to \mathsf{PMC}_{\mathscr{B}}(\mathcal{N}) \to \mathsf{PMC}_{\mathscr{A}}(\mathcal{N}) \to \mathsf{PCSP}(\mathsf{A},\mathsf{A}').$$

Example

$$PCSP(NAE_2, NAE_K) \rightarrow PMC_{\mathcal{H}_K}(6) \rightarrow PMC_{\mathcal{K}}(6) \rightarrow PCSP(K_3, K_5)$$

Fact. Basically, the only 6-ary Mal'cev condition that is not satisfied in $\mathcal{H}_{\mathcal{K}}$ is:

$$o(x, x, y, y, y, x) \approx s(x, y)$$

$$o(x, y, x, y, x, y) \approx s(x, y)$$

$$o(y, x, x, x, x, y, y) \approx s(x, y).$$

Proof: A graph that is not 5-colorable

 $Pol(K_3, K_5)$ does not have such polymorphism o, such polymorphism is a 5-coloring of

$$K_3^6 \mid (x, y, y, y, x, x) \sim (y, x, y, x, y, x) \sim (y, y, x, x, x, y).$$

But that graph contains a 6-clique:

Finale

Theorem

 $PCSP(K_d, K_{2d-1})$ is NP-hard.

- ▶ In the proof, we did not come with a new source of hardness. We still essentially use the PCP Theorem [Arora, Safra, '98].
- ► Find a new better proof of the PCP Theorem!

Theorem

If every height 1 Mal'cev condition satisfied by Pol(A, B) is satisfied in Pol(C, D) then PCSP(C, D) is log-space reducible to PCSP(A, B).

- ▶ Unlike CSP, there is not a single source of hardness of PCSP under algebraic reductions!
- Something is missing.
- Can we use some ideas in approximation, UGC?