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CSP(A)

1. Pol(A) [Jeavons, Cohen, Gyssens, “97]
2. identities in Pol(A) [Bulatov, Jeavons, ’01; BJK05]
3. height 1 identities in Pol(A) [Barto, Pinsker, O, ‘17]

Identity is of height 1 if it is of the form:

f (xσ (1), . . . , xσ (n)) ≈ g(xπ(1), . . . , xπ(m)).
(σ : [n]→ [k ], π : [m]→ [k ])

No composition!



PCSP(A,B):

1. Pol(A,B) [Austrin, Håstad, Guruswami, ‘14; BG16a]
2. ??

Excuses
Polymorphisms of a pair of structures cannot be composed!
We don’t have clones, therefore there are no algebras involved!

3. height 1 identities in Pol(A,B)

Pol(Kd, K2d−2) is equationally trivial [Brakensiek, Guruswami, ’16b].



Identities and the main theorem

A Mal’cev condition is a finite set of identities (functional equations).
Example.

o(x, x, y, y, y, x) ≈ s(x, y)
o(x, y, x, y, x, y) ≈ s(x, y)
o(y, x, x, x, y, y) ≈ s(x, y)

Function symbols are variables! I.e., we usually ask for functions that
satisfy the identities.
Theorem
If every height 1 Mal’cev condition satisfied by Pol(A,B) is satisfied in
Pol(C,D) then PCSP(C,D) is log-space reducible to PCSP(A,B).



Example: Graph coloring from hypergraph coloring

Claim
It is NP-hard to distinguish between a graph that is 3-colorable and one
that is not 5-colorable. Equivalently, PCSP(K3, K5) is NP-hard.

Theorem (Dinur, Regev, Smyth, ’05)
For each K ≥ 2, it is NP-hard to distinguish between a 3-uniform
hypergraph that is colorable by 2 colors, and one that is not colorable by
K colors. Consequently, PCSP(NAE2,NAEK ) is NP-hard for all K .

NAEk is a relational structure with universe [k ] and a single ternary relation Rk
saying ‘the three entries are not all equal’, i.e.,

Rk = {(x, y, z) ∈ [k ]3 : x 6= y or x 6= z}.

Key point. Every height 1 Mal’cev condition satisfied in Pol(K3, K5) is
satisfied in Pol(NAE2,NAEK ).



Intermediate problem: Deciding identities

Fix N > 0. Let U and V be two disjoint sets of function symbols with
arities ≤ N.
MC(N):
Given (Σ, U, V), where Σ is a bipartite minor condition over U and V that
involves at most N-ary function symbols, decide whether the condition
is satisfied by projections.

A bipartite minor Mal’cev condition over U and V is a finite set of
identities of the form

g(xπ(1), . . . , xπ(m)) ≈ f (x1, . . . , xn)

for some π : [m]→ [n], f ∈ U, and g ∈ V.



Identities and label cover

Triviality of minor conditions Label cover

(Σ, U, V) (U, V , E,Π)

w(x, x, y) ≈ s(x, y) ws π π :
0
1
2

x
y

Functions ≡ long codes of labels Labels

Long code of i ∈ [n] is

pi : x→ x(i)

(a.k.a. the i-th projection).

Commonly used with long code.



Example: From PCSP(NAE2,NAEK ) to MC(6)

I For each vertex v introduce a binary symbol tv into V.
I For each edge e = (v1, v2, v3), introduce a 6-ary fe into U , and add

constraints:

fe(x, x, y, y, y, x) ≈ tv1 (x, y)
fe(x, y, x, y, x, y) ≈ tv2 (x, y)
fe(y, x, x, x, y, y) ≈ tv3 (x, y)

f(v1,v2,v3)

tv1

tv2

tv3

Few observations.
I A solution to the MC instance gives a solution to CSP(NAE2).
I It is enough to have a solution in Pol(NAE2,NAEK ): The assignment
v 7→ tv (0, 1) is a solution.



Promise satisfaction of identities

Fix N and a set of functions A .
Promise MCA (N)
Given (Σ, U, V), where Σ is a bipartite minor condition over U and V that
involves at most N-ary function symbols, decide between:
I Σ is trivial, and
I Σ is not satisfied in A .

Theorem
Let HK = Pol(NAE2,NAEK ). PMCHK (6) is NP-hard for all K ≥ 2.

Theorem
For every PCSP template (A,B) there exists N such that PCSP(A,B) is
log-space reducible to PMCA (N) where A = Pol(A,B).



Example: From PMC to PCSP

Hint
We can ask Is this minor condition satisfied by polymorphisms of a CSP
template A? as an instance of CSP(A).

I For a PCSP template (A,B), we use just A to construct the instance.
I Warning! The graph is of exponential size in N.

Theorem
For every PCSP template (A,B) and all N , PMCA (N) is log-space
reducible to PCSP(A,B) where A = Pol(A,B).

Example
PMCK (6) is log-space reducible to PCSP(K3, K5) (K = Pol(K3, K5)).



The gap

Given that A = Pol(A,A′) satisfies all Mal’cev conditions satisfied in
B = Pol(B,B′), we have log-space reductions:

PCSP(B,B′)→ PMCB(N)→ PMCA (N)→ PCSP(A,A′).

Example

PCSP(NAE2,NAEK )→ PMCHK (6)→ PMCK (6)→ PCSP(K3, K5)

Fact. Basically, the only 6-ary Mal’cev condition that is not satisfied in
HK is:

o(x, x, y, y, y, x) ≈ s(x, y)
o(x, y, x, y, x, y) ≈ s(x, y)
o(y, x, x, x, y, y) ≈ s(x, y).



Proof: A graph that is not 5-colorable

Pol(K3, K5) does not have such polymorphism o, such polymorphism is
a 5-coloring of

K 6
3 / (x, y, y, y, x, x) ∼ (y, x, y, x, y, x) ∼ (y, y, x, x, x, y).

But that graph contains a 6-clique:

(001 110)

(112 221)

(220 002)

(012 120)

(120 201)

(201 012)

�



Finale

Theorem
PCSP(Kd, K2d−1) is NP-hard.

I In the proof, we did not come with a new source of hardness. We
still essentially use the PCP Theorem [Arora, Safra, ’98].

I Find a new better proof of the PCP Theorem!

Theorem
If every height 1 Mal’cev condition satisfied by Pol(A,B) is satisfied in
Pol(C,D) then PCSP(C,D) is log-space reducible to PCSP(A,B).

I Unlike CSP, there is not a single source of hardness of PCSP under
algebraic reductions!

I Something is missing.
I Can we use some ideas in approximation, UGC?
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